| 注册
首页|期刊导航|计算机工程与应用|融合注意力机制和CNN-GRNN模型的读者情绪预测

融合注意力机制和CNN-GRNN模型的读者情绪预测

张琦 彭志平

计算机工程与应用2018,Vol.54Issue(13):168-174,7.
计算机工程与应用2018,Vol.54Issue(13):168-174,7.DOI:10.3778/j.issn.1002-8331.1701-0270

融合注意力机制和CNN-GRNN模型的读者情绪预测

Attention-based convolutional-gated recurrent neural network for reader’s emotion prediction

张琦 1彭志平2

作者信息

  • 1. 广东工业大学 计算机学院,广州 510006
  • 2. 广东石油化工学院 计算机与电子信息学院,广东 茂名 525000
  • 折叠

摘要

Abstract

The past reader’s emotion prediction methods are unable to capture the complex semantic and grammatical information in the document, and have mostly used in multi-label classification technology, which limit its development and application. To solve this problem, an improved method named attention-based convolutional-gated recurrent neural network for reader’s emotion prediction is presented. This method firstly divides the document into several sentences, and then adopts convolutional neural network to produce sentence-level representations from word vectors. Such useful sen-tence features can be sequentially integrated using gated recurrent neural network, and a novel attention mechanism is pro-posed to build a document-level representation according to their contribution to reader’s emotion prediction. Finally, a softmax regression is applied to predict reader’s emotion distributions. Experimental results on Yahoo news corpus demon-strate that the proposed method achieves better accuracy compared with state-of-the-art methods.

关键词

情感分析/读者情绪预测/卷积神经网络/门限循环神经网络/注意力机制

Key words

sentiment analysis/reader’s emotion prediction/convolutional neural network/gated recurrent neural net-work/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

张琦,彭志平..融合注意力机制和CNN-GRNN模型的读者情绪预测[J].计算机工程与应用,2018,54(13):168-174,7.

基金项目

国家自然科学基金(No.61272382,No.61672174) (No.61272382,No.61672174)

广东省科技计划项目(No.2015B020233019). (No.2015B020233019)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文