计算机与数字工程2018,Vol.46Issue(6):1167-1172,6.DOI:10.3969/j.issn.1672-9722.2018.06.022
一种基于改进的关联规则挖掘算法的Android恶意软件检测方法
One of Android Malware Detection Method Based on Improved Permission Association Rules Mining Algorithm
严喆 1朱保平1
作者信息
- 1. 南京理工大学计算机科学与工程学院 南京 210094
- 折叠
摘要
Abstract
To solve the problem of rising demand for malware detection on Android platforms and the existing association rule mining algorithms are inefficient and they cannot be used directly in the detection of malicious software,an algorithm AEclat is de?signed to dig out permissions association rules which are based on a improved permission association rules data mining algorithm Eclat in our paper. This algorithm is used to test 49 malicious application families,then though the maximal frequent item set which the permissions association dataset is built to detect malware. The experimental results show that the proposed method has a high rec?ognition rate and a low false alarm rate on malware detection,it can effectively enhance the security of Android system.关键词
Android/关联规则/恶意软件检测/数据挖掘/权限组合Key words
Android/association rules/malware detection/data mining/permission combination分类
信息技术与安全科学引用本文复制引用
严喆,朱保平..一种基于改进的关联规则挖掘算法的Android恶意软件检测方法[J].计算机与数字工程,2018,46(6):1167-1172,6.