| 注册
首页|期刊导航|生物医学工程研究|基于遗传算法的运动想象脑电信号分类准确率的提升方法

基于遗传算法的运动想象脑电信号分类准确率的提升方法

高诺 鲁昊 鲁守银 吴林彦

生物医学工程研究2018,Vol.37Issue(2):127-131,5.
生物医学工程研究2018,Vol.37Issue(2):127-131,5.DOI:10.19529/j.cnki.1672-6278.2018.02.02

基于遗传算法的运动想象脑电信号分类准确率的提升方法

An improved classification method for motor imagery EEG signals based on genetic algorithm

高诺 1鲁昊 1鲁守银 1吴林彦1

作者信息

  • 1. 山东建筑大学信息与电气工程学院,济南250101
  • 折叠

摘要

Abstract

In order to improve the recognition rate of motor imagery EEG signals,an improvement classification method based on genetic algorithm (GA) was proposed.The proposed method combined GA and common spatial pattern (CSP) to extract the features of different time.After considering the classification accurate,GA was used to calculate different time slices’ weights.And based on the weights, the data credibility was calculated.Using the EEG signals collected in this laboratory,the accuracy of classification improved from about 80%before weighting to more than 95%after weighting.The experimental results confirm that this method can effectively improve the classification accuracy of EEG signals,and can eliminate low-quality data according to credibility.At the same time, this method can also be combined with other feature extraction methods to calculate the validity and credibility of different time and frequen-cy characteristics to improve the classification accuracy.

关键词

脑电信号(EEG)/共同空间模式(CSP)/遗传算法(GA)/分类结果加权/数据筛选

Key words

Electroencephalogram(EEG)/Common spatial pattern(CSP)/Genetic algorithm(GA)/Classification result weigh-ting/Data screening

分类

医药卫生

引用本文复制引用

高诺,鲁昊,鲁守银,吴林彦..基于遗传算法的运动想象脑电信号分类准确率的提升方法[J].生物医学工程研究,2018,37(2):127-131,5.

基金项目

国家自然科学基金资助项目(61403237):山东省科技重大专项(2015ZDXXX0801A03) (61403237)

山东省重点研发计划项目(2017CXGC1505). (2017CXGC1505)

生物医学工程研究

OACSTPCD

1672-6278

访问量0
|
下载量0
段落导航相关论文