| 注册
首页|期刊导航|上海航天|基于深度学习算法的极化合成孔径雷达通用分类器设计

基于深度学习算法的极化合成孔径雷达通用分类器设计

李索 张支勉 王海鹏

上海航天2018,Vol.35Issue(3):1-7,7.
上海航天2018,Vol.35Issue(3):1-7,7.DOI:10.19328/j.cnki.1006-1630.2018.03.001

基于深度学习算法的极化合成孔径雷达通用分类器设计

General Purpose PolSAR Classifier Based on Deep Learning Algorithm

李索 1张支勉 1王海鹏1

作者信息

  • 1. 复旦大学 电磁波信息科学教育部重点实验室,上海 200433
  • 折叠

摘要

Abstract

Terrain classification is one of the most important applications of polarimetric synthetic aperture radar (PolSAR)data. The classic algorithms are limited by manual designed features and classifiers. However, deep learning can extract hierarchical features from big data. Open literatures of deep-learning based PolSAR data classification approaches are firstly reviewed, and one general purpose PolSAR image classifier is then presented based on deep learning and PolSAR big data. Manually labelled data are used for training, and experiments are carried out on both airborne and space-borne SAR data with variant resolution. The results show that the proposed classifier is highly accurate and efficient, which is helpful for big data utilization, especially for GF-3PolSAR data.

关键词

合成孔径雷达/极化/深度学习/卷积神经网络/地物分类

Key words

synthetic aperture radar(SAR)/polarimetric/deep learning/convolutional neural network(CNN)/terrain classification

分类

信息技术与安全科学

引用本文复制引用

李索,张支勉,王海鹏..基于深度学习算法的极化合成孔径雷达通用分类器设计[J].上海航天,2018,35(3):1-7,7.

基金项目

国家自然科学基金(61571132,61331020) (61571132,61331020)

上海航天科技创新基金(SAST2016061) (SAST2016061)

上海航天

OACSCDCSTPCD

2096-8655

访问量5
|
下载量0
段落导航相关论文