| 注册
首页|期刊导航|陕西科技大学学报|基于U-net网络的航拍绝缘子检测

基于U-net网络的航拍绝缘子检测

陈景文 周鑫 张蓉 张东

陕西科技大学学报2018,Vol.36Issue(4):153-157,5.
陕西科技大学学报2018,Vol.36Issue(4):153-157,5.

基于U-net网络的航拍绝缘子检测

Aerial insulator detection based on U-net network

陈景文 1周鑫 1张蓉 1张东1

作者信息

  • 1. 陕西科技大学电气与信息工程学院,陕西西安 710021
  • 折叠

摘要

Abstract

To make sure that the transmission circuits work safely and stably,it is necessary to inspect the circuits on a regular basis.As the core component of transmission line,the in-sulator detection plays an important role in the inspection of transmission line fault in power grid.For unmanned aerial vehicles with a large number of complex background and low reso-lution images of aerial insulators,the traditional manual feature extraction method and classi-cal convolutional neural network identification method are easy to lose location and details,and the location accuracy is relatively low.It is difficult to accurately identify the insulator images in complex background.Therefore,an aerial photo insulator detection method based on deep learning U-net network is proposed,automatic extraction of hierarchical feature,through the overlapping method combining the characteristics of shallow and high dimen-sional features,the high resolution feature map of the shallow layer is used for pixel location,and the deep high dimensional feature graph is used to classify the pixels.It avoids the loss of detailed information such as the location of the target,improves the positioning accuracy,and effectively detects the insulator under complicated background.The accuracy rate reaches 88.9%,which is an effective insulator detection method.

关键词

U-net网络/航拍图像/绝缘子/检测

Key words

U-net network/aerial images/insulator/detect

分类

信息技术与安全科学

引用本文复制引用

陈景文,周鑫,张蓉,张东..基于U-net网络的航拍绝缘子检测[J].陕西科技大学学报,2018,36(4):153-157,5.

基金项目

西安市科技局技计划项目(2017068CG/RC031(SXKD001)) (2017068CG/RC031(SXKD001)

陕西科技大学学报

OACSTPCD

2096-398X

访问量0
|
下载量0
段落导航相关论文