| 注册
首页|期刊导航|西南交通大学学报|脉冲干扰复数域Cohen-Grossberg神经网络的稳定性

脉冲干扰复数域Cohen-Grossberg神经网络的稳定性

徐晓惠 徐全 施继忠 张继业 陈子龙

西南交通大学学报2018,Vol.53Issue(4):820-828,9.
西南交通大学学报2018,Vol.53Issue(4):820-828,9.DOI:10.3969/j.issn.0258-2724.2018.04.021

脉冲干扰复数域Cohen-Grossberg神经网络的稳定性

Stability of Impulsive Disturbance Complex-Valued Cohen-Grossberg Neural Networks in a Complex Number Domain

徐晓惠 1徐全 2施继忠 3张继业 4陈子龙5

作者信息

  • 1. 西华大学汽车测控与安全四川省重点实验室,四川 成都610039
  • 2. 西华大学流体及动力机械教育部重点实验室,四川 成都610039
  • 3. 西华大学技术学院,四川 成都 610039
  • 4. 浙江师范大学工学院,浙江 金华321004
  • 5. 西南交通大学牵弓动力国家重点实验室,四川 成都610031
  • 折叠

摘要

Abstract

To analyse the effect of impulsive disturbances on neural networks, the dynamical behaviour of these disturbances was examined at the module of the equilibrium point of a class of complex-valued Cohen-Grossberg neural networks with time-varying delays. It was assumed that amplification,self-feedback,and activation functions were defined in a complex number domain. First,the existence and uniqueness of the equilibrium point of the system were analysed by utilising the corresponding property of the M matrix and the theorem of homeomorphism mapping. Second,the globally exponential stability of the module of the equilibrium point of the system was studied by applying the vector Lyapunov function and mathematical induction methods. The corresponding stability criteria were then established. Finally,two numerical examples from simulations were given to illustrate the practicability and correctness of the obtained results. The simulation results revealed that the states of the addressed system can reach equilibrium within 0. 5 s. Other results showed that the greater the delay and impulsive strength and the smaller the amplification,the slower was the state convergence rate.

关键词

Cohen-Grossberg神经网络/复数域/脉冲干扰/变时滞/模指数稳定性/Lyapunov函数

Key words

Cohen-Grossberg neural networks/complex number domain/impulsive disturbances/time-varying delays/exponential stability/Lyapunov function

分类

信息技术与安全科学

引用本文复制引用

徐晓惠,徐全,施继忠,张继业,陈子龙..脉冲干扰复数域Cohen-Grossberg神经网络的稳定性[J].西南交通大学学报,2018,53(4):820-828,9.

基金项目

国家自然科学基金资助项目(11402214,11572264) (11402214,11572264)

四川省教育厅自然科学重点项目(17ZA0364,16ZB0163) (17ZA0364,16ZB0163)

四川省青年科技创新研究团队(2017TD0035,2017TD0026,2015TD0021,2016HH0010) (2017TD0035,2017TD0026,2015TD0021,2016HH0010)

浙江省自然科学基金资助项目(LY14E08006) 流体及动力机械教育部重点实验室研究基金(szjj2016-007) (LY14E08006)

汽车测控与安全四川省重点实验室研究基金(szjj2017-074). (szjj2017-074)

西南交通大学学报

OA北大核心CSCDCSTPCD

0258-2724

访问量0
|
下载量0
段落导航相关论文