北京师范大学学报(自然科学版)2018,Vol.54Issue(2):151-156,6.DOI:10.16360/j.cnki.jbnuns.2018.02.001
基为Lorentz锥的管状区域上复Hardy空间HP(0<p≤1)中函数边值的Fourier变换
Fourier transform of Hardy spaces Hp on tubes over the Lorentz cones for 0<p≤l
摘要
Abstract
Let Hp (T(r)) be the complex Hardy space on n-dimensional complex domain, where T? is the tube domain over a regular convex open cone Γ() R". For 1≤p<∞,Li showed the sufficient and necessary condition of a function to be in Hp (T(r)) by analyzing Fourier transform of its non-tangential boundary value, thus extended one of the classical Paley-Wiener theorems to higher dimension. Li also showed the characteristics of boundary values of functions in Hp (T(r)),where 0<p≤l and Γ is the first octant of R",in distributional sense. The main purpose of this work is to further study the case that Γ is the Lorentz cone of Rn,and extend research of function characteristics in higher dimensional complex Hardy space.关键词
Hardy空间/Fourier变换/管状区域/Lorentz锥Key words
Hardy space/Fourier transform/tube domain/Lorentz cone分类
数理科学引用本文复制引用
刘荣,邓冠铁..基为Lorentz锥的管状区域上复Hardy空间HP(0<p≤1)中函数边值的Fourier变换[J].北京师范大学学报(自然科学版),2018,54(2):151-156,6.基金项目
国家自然科学基金资助项目(11271045) (11271045)