| 注册
首页|期刊导航|铸造技术|基于深度置信网络的高炉炉况故障分类方法的研究

基于深度置信网络的高炉炉况故障分类方法的研究

赵辉 赵德涛 岳有军 王红君

铸造技术2018,Vol.39Issue(5):1028-1032,5.
铸造技术2018,Vol.39Issue(5):1028-1032,5.DOI:10.16410/j.issn1000-8365.2018.05.021

基于深度置信网络的高炉炉况故障分类方法的研究

Research on Fault Classification of Blast Furnace Condition Based on Deep Belief Network

赵辉 1赵德涛 2岳有军 1王红君1

作者信息

  • 1. 天津理工大学 天津市复杂系统控制理论与应用重点实验室,天津 300384
  • 2. 天津农学院,天津 300384
  • 折叠

摘要

Abstract

With the continuous development of intelligent manufacturing and computer technology, the modern industrial systems had tended to be complicated and intelligent, which caused the original industrial system fault diagnosis methods to meet the bottleneck. In recent years, deep learning method shown the distinctive advantages and potential in terms of feature extraction and pattern recognition. According to the complex characteristics of the blast furnace smelting system, and combining with the advantages of deep learning in dealing with complex distribution data and extracting features, a kind of blast furnace condition classification method were proposed based on the deep belief network model, the actual sample data were analyzed. The results show that this method is suitable for the classification of blast furnace condition, and it has strong feature extraction ability and fault tolerance characteristic, and it has better performance than BP neural network and support vector machine method.

关键词

深度学习/高炉炉况/深度置信网络/特征提取/分类

Key words

deep learning/blast furnace condition/DBN/feature extraction/classification

分类

信息技术与安全科学

引用本文复制引用

赵辉,赵德涛,岳有军,王红君..基于深度置信网络的高炉炉况故障分类方法的研究[J].铸造技术,2018,39(5):1028-1032,5.

基金项目

天津市科技支撑计划重点项目: 基于全流程优化控制与系统节能思想的钢铁企业先进能源管理系统 (2013ZCZDGX03800) (2013ZCZDGX03800)

铸造技术

1000-8365

访问量0
|
下载量0
段落导航相关论文