| 注册
首页|期刊导航|中国电机工程学会电力与能源系统学报(英文版)|PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy

PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy

Yordanos Kassa Semero Jianhua Zhang Dehua Zheng

中国电机工程学会电力与能源系统学报(英文版)2018,Vol.4Issue(2):210-218,9.
中国电机工程学会电力与能源系统学报(英文版)2018,Vol.4Issue(2):210-218,9.DOI:10.17775/CSEEJPES.2016.01920

PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy

PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy

Yordanos Kassa Semero 1Jianhua Zhang 1Dehua Zheng2

作者信息

  • 1. School of Electrical and Electronic Engineering,North China Electric Power University, Beijing 102206, China
  • 2. Goldwind Science and Technology Co., Ltd.,Beijing 100176, China
  • 折叠

摘要

关键词

ANFIS/binary genetic algorithm/feature selection/hybrid method/particle swarm optimization/PV power forecasting

Key words

ANFIS/binary genetic algorithm/feature selection/hybrid method/particle swarm optimization/PV power forecasting

引用本文复制引用

Yordanos Kassa Semero,Jianhua Zhang,Dehua Zheng..PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy[J].中国电机工程学会电力与能源系统学报(英文版),2018,4(2):210-218,9.

中国电机工程学会电力与能源系统学报(英文版)

OACSCDCSTPCDSCI

2096-0042

访问量0
|
下载量0
段落导航相关论文