中国电机工程学会电力与能源系统学报(英文版)2018,Vol.4Issue(2):210-218,9.DOI:10.17775/CSEEJPES.2016.01920
PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy
PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy
Yordanos Kassa Semero 1Jianhua Zhang 1Dehua Zheng2
作者信息
- 1. School of Electrical and Electronic Engineering,North China Electric Power University, Beijing 102206, China
- 2. Goldwind Science and Technology Co., Ltd.,Beijing 100176, China
- 折叠
摘要
关键词
ANFIS/binary genetic algorithm/feature selection/hybrid method/particle swarm optimization/PV power forecastingKey words
ANFIS/binary genetic algorithm/feature selection/hybrid method/particle swarm optimization/PV power forecasting引用本文复制引用
Yordanos Kassa Semero,Jianhua Zhang,Dehua Zheng..PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy[J].中国电机工程学会电力与能源系统学报(英文版),2018,4(2):210-218,9.