| 注册
首页|期刊导航|电网技术|风电和光伏随机场景生成的条件变分自动编码器方法

风电和光伏随机场景生成的条件变分自动编码器方法

王守相 陈海文 李小平 舒欣

电网技术2018,Vol.42Issue(6):1860-1867,8.
电网技术2018,Vol.42Issue(6):1860-1867,8.DOI:10.13335/j.1000-3673.pst.2018.0291

风电和光伏随机场景生成的条件变分自动编码器方法

Conditional Variational Automatic Encoder Method for Stochastic Scenario Generation of Wind Power and Photovoltaic System

王守相 1陈海文 1李小平 2舒欣2

作者信息

  • 1. 智能电网教育部重点实验室(天津大学),天津市 南开区 300072
  • 2. 国网湖北省电力有限公司电力科学研究院,湖北省 武汉市 430077
  • 折叠

摘要

Abstract

Along with increasing penetration of renewable energy sources, such as wind power and photovoltaics, their volatility has a adverse influence on stable and economic operation of power grids, so it is more important to model uncertainty of renewable energy. Random scenario analysis is a major method to solve the problem. Existing methods build probability model and generate scenarios based on sampled historical data. But major obstacles remain, such as low model accuracy and high computational complexity. This paper proposes a stochastic scenario generation method based on conditional variational autoencoder (VAE). Compared with existing methods, the proposed method can carry out unsupervised learning for temporal, spatial, and fluctuant characteristics of training data, and generate scenarios efficiently matching characteristics of observation data according to the given condition without scenario reduction. Effectiveness of the proposed algorithm is verified for three testing scenarios: single unit, multiple units and designated tag scene.

关键词

随机场景分析/条件变分自动编码器/深度学习/场景生成

Key words

stochastic scenario analysis/conditional variational automatic encoder/deep learning/stochastic scenario generation

分类

信息技术与安全科学

引用本文复制引用

王守相,陈海文,李小平,舒欣..风电和光伏随机场景生成的条件变分自动编码器方法[J].电网技术,2018,42(6):1860-1867,8.

基金项目

国家电网公司科技项目(52153217000F).Project Supported by Science and Technology Project of State Grid Corporation of China (52153217000F). (52153217000F)

电网技术

OA北大核心CSCDCSTPCD

1000-3673

访问量6
|
下载量0
段落导航相关论文