| 注册
首页|期刊导航|高压电器|多神经网络与证据理论的变压器故障诊断方法

多神经网络与证据理论的变压器故障诊断方法

张文元 赵卫国 晋涛 俞华 王伟

高压电器2018,Vol.54Issue(8):207-211,5.
高压电器2018,Vol.54Issue(8):207-211,5.DOI:10.13296/j.1001-1609.hva.2018.08.032

多神经网络与证据理论的变压器故障诊断方法

Fault Diagnosis Method of Transformer Based on Multi-neural Network and Evidence Theory

张文元 1赵卫国 2晋涛 2俞华 2王伟2

作者信息

  • 1. 山西国际能源集团有限公司,太原 030022
  • 2. 国网山西省电力公司电力科学研究院,太原 030001
  • 折叠

摘要

Abstract

In order to solve the problem that it is difficult to locate and identify power transformer faults quickly and accurately, a synthetic diagnosis method using multi-neural network and evidence theory for transformer fault diagnosis is presented. This method combines the strong nonlinear fitting ability of neural networks with the advantages of evidence theory in dealing with subjective and objective contradictions in uncertain reasoning problems. Various kinds of dissolved gas data in oil and conventional electrical test data are dealt by using neural network's excellent abilities of learning, memory and recognition. Integrating data fusion methods, neural network's preliminary results are diagnosed by evidence theory and the accurate diagnosis of transformer faults is realized. It has been shown by experiments that the accuracy rate of transformer fault diagnosis is up to 73%.

关键词

变压器/多神经网络/证据理论/故障诊断

Key words

transformer/multi-neural network/evidence theory/fault diagnosis

引用本文复制引用

张文元,赵卫国,晋涛,俞华,王伟..多神经网络与证据理论的变压器故障诊断方法[J].高压电器,2018,54(8):207-211,5.

高压电器

OA北大核心CSCDCSTPCD

1001-1609

访问量0
|
下载量0
段落导航相关论文