| 注册
首页|期刊导航|化工学报|基于选择性集成核学习算法的固废焚烧过程二英排放浓度软测量

基于选择性集成核学习算法的固废焚烧过程二英排放浓度软测量

汤健 乔俊飞

化工学报2019,Vol.70Issue(2):696-706,11.
化工学报2019,Vol.70Issue(2):696-706,11.DOI:10.11949/j.issn.0438⁃1157.20181354

基于选择性集成核学习算法的固废焚烧过程二英排放浓度软测量

Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm

汤健 1乔俊飞2

作者信息

  • 1. 北京工业大学信息学部,北京100124
  • 2. 计算智能与智能系统北京市重点实验室,北京100124
  • 折叠

摘要

Abstract

Dioxin (DXN) emitted from the municipal solid waste incineration (MSWI) process is a persistent pollutant of the "century poison". DXN is one of the highly toxic and persistent pollution. The principal model of DXN emission is difficult to obtained duo to the complex multi-stage and multi-temperature phase′s physical chemical characteristics. In practical, DXN emission concentration is off-line measured with month or quarter period by quantified national laboratory with long lag time delay. Aiming at these problems, a new DXN emission concentration soft measuring method based on selective ensemble (SEN) kernel learning algorithm is proposed. At first, candidate kernel parameters and regularization parameters are given based on prior knowledge. Then, candidate sub-sub-models based on these super parameters are constructed. Thirdly, coupled optimization and weighting algorithms are used to build SEN-sub-models. Finally, these SEN-sub-models are selective combined as final SEN model by using optimization and weighting algorithms again. Simulation results based on the concrete compression strength and incineration process DXN data validate effectiveness of the proposed approach.

关键词

城市固废焚烧/过程系统/二英/参数估值/选择性集成/废物处理

Key words

municipal solid waste incineration/ process systems/ dioxin/ parameter estimation/ selective ensemble/waste treatment

分类

化学化工

引用本文复制引用

汤健,乔俊飞..基于选择性集成核学习算法的固废焚烧过程二英排放浓度软测量[J].化工学报,2019,70(2):696-706,11.

基金项目

科学技术部国家重点研发计划项目(2018YFC1900801) (2018YFC1900801)

国家自然科学基金项目(61573364,61873009) (61573364,61873009)

矿冶过程自动控制技术国家(北京)重点实验室项目(BGRIMM-KZSKL-2017-07) (北京)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量3
|
下载量0
段落导航相关论文