| 注册
首页|期刊导航|计算机工程与应用|采用分段RTS的CPHD平滑算法

采用分段RTS的CPHD平滑算法

陈金广 王星辉 马丽丽 张馨东 巩林明

计算机工程与应用2019,Vol.55Issue(1):50-55,95,7.
计算机工程与应用2019,Vol.55Issue(1):50-55,95,7.DOI:10.3778/j.issn.1002-8331.1805-0090

采用分段RTS的CPHD平滑算法

Cardinalized Probability Hypothesis Density Smoother Using Piece-wise RTS

陈金广 1王星辉 2马丽丽 1张馨东 2巩林明1

作者信息

  • 1. 西安工程大学 计算机科学学院 陕西省服装设计智能化重点实验室,西安 710048
  • 2. 西安工程大学 计算机科学学院 新型网络智能信息服务国家地方联合工程研究中心,西安 710048
  • 折叠

摘要

Abstract

Aiming at the problem of fixed interval smoothing in multi-target tracking, the Cardinalized Probability Hypothesis Density(CPHD)filter and the RTS smoother are combined, and a cardinalized probability hypothesis density smoothing algorithm for RTS is given. Considering the problem of large output delay in the smoothing process, a piecewise RTS cardinalized probability hypothesized density smoother is proposed using the idea of piecewise smoothing. Firstly, estimation values are segmented using a fixed interval. Secondly, track-estimate is associated using Hungarian algorithm. Finally, the RTS smoothing is performed on the associated tracks. The experimental results show, the CPHD smoother using piecewise RTS can estimate the target state more accurately comparing with the CPHD filter, and can effectively avoid the problem of poor real-time performance when used RTS smoother directly.

关键词

目标跟踪/RTS平滑/势概率假设密度滤波/航迹-估计关联/信息融合

Key words

target tracking/RTS smoother/Cardinalized Probability Hypothesis Density filter(CPHD)/track-estimate association/information fusion

分类

信息技术与安全科学

引用本文复制引用

陈金广,王星辉,马丽丽,张馨东,巩林明..采用分段RTS的CPHD平滑算法[J].计算机工程与应用,2019,55(1):50-55,95,7.

基金项目

陕西省自然科学基础研究计划(No.2016JM6030) (No.2016JM6030)

陕西省教育厅科研计划(No.18JK0349) (No.18JK0349)

西安工程大学研究生创新基金(No.chx201813). (No.chx201813)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文