| 注册
首页|期刊导航|计算机工程与应用|基于改进YOLOv3的快速车辆检测方法

基于改进YOLOv3的快速车辆检测方法

张富凯 杨峰 李策

计算机工程与应用2019,Vol.55Issue(2):12-20,9.
计算机工程与应用2019,Vol.55Issue(2):12-20,9.DOI:10.3778/j.issn.1002-8331.1810-0333

基于改进YOLOv3的快速车辆检测方法

Fast Vehicle Detection Method Based on Improved YOLOv3

张富凯 1杨峰 1李策1

作者信息

  • 1. 中国矿业大学(北京)机电与信息工程学院,北京 100083
  • 折叠

摘要

Abstract

Vehicle detection on image or video data is an important but challenging task for urban traffic surveillance. The difficulty of this task is to accurately locate and classify relatively small vehicles in complex scenes. In response to these problems, this paper presents a single deep neural network(DF-YOLOv3)for fast detecting vehicles with different types in urban traffic surveillance. DF-YOLOv3 improves the conventional YOLOv3 by first enhancing the residual network to extract vehicle features, then designing 6 different scale convolution feature maps and merging with the corresponding fea-ture maps in the previous residual network, to form the final feature pyramid for performing vehicle prediction. Experi-mental results on the KITTI dataset demonstrate that the proposed DF-YOLOv3 can achieve efficient detection perfor-mance in terms of accuracy and speed. Specifically, for the 512×512 input model, using NVIDIA GTX 1080Ti GPU, DF-YOLOv3 achieves 93.61% mAP(mean average precision)at the speed of 45.48 f/s(frames per second). Especially, as for accuracy, DF-YOLOv3 performances better than those of Fast R-CNN, Faster R-CNN, DAVE, YOLO, SSD, YOLOv2, YOLOv3 and SINet.

关键词

车辆检测/特征融合/卷积神经网络/实时检测/YOLOv3

Key words

vehicle detection/feature fusion/convolutional neural network/real-time detection/YOLOv3

分类

信息技术与安全科学

引用本文复制引用

张富凯,杨峰,李策..基于改进YOLOv3的快速车辆检测方法[J].计算机工程与应用,2019,55(2):12-20,9.

基金项目

国家自然科学基金(No.81671852) (No.81671852)

四川省教育厅重点项目(No.18ZA0100) (No.18ZA0100)

成都信息工程大学中青年学术带头人科研基金(No.J201709). (No.J201709)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文