| 注册
首页|期刊导航|计算机工程与应用|基于LFM矩阵分解的推荐算法优化研究

基于LFM矩阵分解的推荐算法优化研究

陈晔 刘志强

计算机工程与应用2019,Vol.55Issue(2):116-120,5.
计算机工程与应用2019,Vol.55Issue(2):116-120,5.DOI:10.3778/j.issn.1002-8331.1709-0347

基于LFM矩阵分解的推荐算法优化研究

Research on Improved Recommendation Algorithm Based on LFM Matrix Factorization

陈晔 1刘志强1

作者信息

  • 1. 南京航空航天大学 经济与管理学院,南京 210016
  • 折叠

摘要

Abstract

In the field of recommendation system, the Recommendation Algorithms(RA)based on matrix factorization is one of research hotspots. To improve the problem, this paper focuses on the algorithm improvement of Latent Factor Model (LFM)in the matrix factorization based RA algorithms. Two basic algorithms are modified to provide more accurate out-comes. Finally, a numerical example, which is used to carry out comparative study among different algorithms, proves that the improved algorithm is better than previous works.

关键词

矩阵分解/潜在因子模型/推荐算法/带冲量的批量学习算法/混合学习算法

Key words

matrix factorization/Latent Factor Model(LFM)/recommendation algorithm/batch learning algorithm with momentum/mixed learning algorithm

分类

信息技术与安全科学

引用本文复制引用

陈晔,刘志强..基于LFM矩阵分解的推荐算法优化研究[J].计算机工程与应用,2019,55(2):116-120,5.

基金项目

国家高技术研究发展计划(863)(No.SS2013AA041003). (863)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文