| 注册
首页|期刊导航|计算机工程与应用|多先验融合的图像显著性目标检测算法

多先验融合的图像显著性目标检测算法

董本志 于尚书 景维鹏

计算机工程与应用2019,Vol.55Issue(2):179-186,8.
计算机工程与应用2019,Vol.55Issue(2):179-186,8.DOI:10.3778/j.issn.1002-8331.1710-0208

多先验融合的图像显著性目标检测算法

Salient Object Detection Algorithm via Multiple Prior Fusion

董本志 1于尚书 1景维鹏1

作者信息

  • 1. 东北林业大学 信息与计算机工程学院,哈尔滨 150040
  • 折叠

摘要

Abstract

In order to detect the salient object more accurately, a new salient object detection algorithm based on multiple prior fusion is proposed. Traditional center prior failed to detect salient object deviated from the center of image, the mini-mum convex hull is got by using the intersection of multi color space, and it can determine the location of the object and compute center prior by convex hull region. At the same time, a fusion strategy is proposed, which integrates the convex hull region center prior, color contrast prior and background prior into feature matrix. Finally, the saliency map is generated by the low rank matrix recovery model. The simulation experiments on the open dataset MSRA1000 and ESSCD show that MPLRR can obtain clear and significant salient object visual effect map. At the same time, F, AUC, MAE and other evaluation indicators are also significantly improved than many existing methods.

关键词

MPLRR算法/显著性目标/凸包区域中心先验/融合策略/低秩模型

Key words

Multiple Prior fusion Low Rank Matrix Recovery(MPLRR)algorithm/salient object/convex hull region center prior/fusion strategy/low rank model

分类

信息技术与安全科学

引用本文复制引用

董本志,于尚书,景维鹏..多先验融合的图像显著性目标检测算法[J].计算机工程与应用,2019,55(2):179-186,8.

基金项目

陕西省自然科学基金(No.2017JM6105). (No.2017JM6105)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文