| 注册
首页|期刊导航|计算机工程与应用|用于网络入侵检测的多尺度卷积CNN模型

用于网络入侵检测的多尺度卷积CNN模型

刘月峰 王成 张亚斌 苑江浩

计算机工程与应用2019,Vol.55Issue(3):90-95,153,7.
计算机工程与应用2019,Vol.55Issue(3):90-95,153,7.DOI:10.3778/j.issn.1002-8331.1712-0021

用于网络入侵检测的多尺度卷积CNN模型

Multiscale Convolutional CNN Model for Network Intrusion Detection

刘月峰 1王成 1张亚斌 1苑江浩2

作者信息

  • 1. 内蒙古科技大学 信息工程学院,内蒙古 包头 014010
  • 2. 国家粮食局科学研究院,北京 100037
  • 折叠

摘要

Abstract

In view of the great achievements of convolutional neural networks in many fields such as computer vision, a method of applying multi-scale convolutional neural networks to the field of network intrusion detection is proposed. This method converts the network data in IDS into data that the convolutional neural network can input, uses different scales of convolution to verify a large number of high-dimensional unlabeled original data for different levels of feature extraction, and then uses the BN method to optimize the learning rate of the network structure. The optimal feature representation of raw data. Experiments using the KDDcup99 data set for experimental testing, compared with the classic model, the results show that the MSCNN model not only has a fast convergence rate, but also the false detection rate is reduced by 4.02% on average, and the accuracy rate is increased by 4.38% on average. Therefore, the MSCNN method is a feasible and efficient method and provides a brand-new idea for the field of network intrusion detection systems.

关键词

入侵检测/深度学习/卷积神经网络/BN算法/多尺度卷积

Key words

intrusion detection/deep learning/convolutional neural networks/BN algorithm/multiscale convolution

分类

信息技术与安全科学

引用本文复制引用

刘月峰,王成,张亚斌,苑江浩..用于网络入侵检测的多尺度卷积CNN模型[J].计算机工程与应用,2019,55(3):90-95,153,7.

基金项目

贵州省科学技术基金(No.[2015]2076,No.[2016]7018). (No.[2015]2076,No.[2016]7018)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文