| 注册
首页|期刊导航|计算机工程与应用|基于递归残差网络的遥感图像超分辨率重建

基于递归残差网络的遥感图像超分辨率重建

王爱丽 宋晓莹 陈雨时

计算机工程与应用2019,Vol.55Issue(3):191-195,5.
计算机工程与应用2019,Vol.55Issue(3):191-195,5.DOI:10.3778/j.issn.1002-8331.1711-0086

基于递归残差网络的遥感图像超分辨率重建

Super-Resolution Reconstruction of Remote Sensing Image Based on Recursive Residual Network

王爱丽 1宋晓莹 1陈雨时2

作者信息

  • 1. 哈尔滨理工大学 测控技术与通信工程学院,哈尔滨 150080
  • 2. 哈尔滨工业大学 图像与信息技术研究所,哈尔滨 150001
  • 折叠

摘要

Abstract

The deep network can effectively improve the accuracy of the reconstructed image, but it has a large number of parameters, which makes the training time too long. Therefore, this paper improves the super-resolution reconstruction algorithm of remote sensing image based on recursive residual network. The global residual learning and local residual learning are combined to effectively reduce the difficulty of training deep network and control the network parameters through recursive learning. The experimental results show that the recursive residual network is effective in the super-reso-lution reconstruction of the remote sensing image, and the improved network can obtain better subjective visual effect and objective evaluation index.

关键词

递归残差网络/遥感图像超分辨率重建/残差学习/递归学习

Key words

recursive residual network/remote sensing image super-resolution reconstruction/residual learning/recursive learning

分类

信息技术与安全科学

引用本文复制引用

王爱丽,宋晓莹,陈雨时..基于递归残差网络的遥感图像超分辨率重建[J].计算机工程与应用,2019,55(3):191-195,5.

基金项目

国家重点研发计划项目(No.2016YFC0104505) (No.2016YFC0104505)

国家自然科学基金(No.61701492,No.61201117) (No.61701492,No.61201117)

江苏省自然科学基金(No. BK20170392,No.BK20151232) (No. BK20170392,No.BK20151232)

中国科学院青年创新促进会(No.2014281) (No.2014281)

苏州市前瞻性应用研究项目(No.SYG201608). (No.SYG201608)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文