| 注册
首页|期刊导航|计算机与数字工程|基于词向量的文本分类研究

基于词向量的文本分类研究

马力 李沙沙

计算机与数字工程2019,Vol.47Issue(2):281-284,303,5.
计算机与数字工程2019,Vol.47Issue(2):281-284,303,5.DOI:10.3969/j.issn.1672-9722.2019.02.005

基于词向量的文本分类研究

Research on Text Classification Based on Word Embedding

马力 1李沙沙1

作者信息

  • 1. 西安邮电大学 西安 710061
  • 折叠

摘要

Abstract

Focusing on the problems of the low classification accuracy of traditional feature selection algorithm,an improved text feature selection algorithm is proposed based on word vector. The article takes microblog data as the research object to carry on the sentiment analysis. It forwards an assumption that the feature items which are similar to the ones have strong category distinguish ability,would also have strong ability to distinguish categories. It applies word embedding which Word2vec trains to the process of traditional feature selection,and expands the feature items appropriately according to the similarity relation between the word vec?tors.The experimental results show that the improved feature selection algorithm has better results in its classification accuracy.

关键词

词向量/特征扩展/Word2vec/文本分类

Key words

word embedding/feature expansion/Word2vec/text classification

分类

信息技术与安全科学

引用本文复制引用

马力,李沙沙..基于词向量的文本分类研究[J].计算机与数字工程,2019,47(2):281-284,303,5.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文