| 注册
首页|期刊导航|南京理工大学学报(自然科学版)|基于在线序列优化极限学习机的电子商务客户流失量预测模型

基于在线序列优化极限学习机的电子商务客户流失量预测模型

杨力

南京理工大学学报(自然科学版)2019,Vol.43Issue(1):108-114,7.
南京理工大学学报(自然科学版)2019,Vol.43Issue(1):108-114,7.DOI:10.14177/j.cnki.32-1397n.2019.43.01.015

基于在线序列优化极限学习机的电子商务客户流失量预测模型

Predictions model of customer churn in E-commerce based on online sequential optimization extreme learning machine

杨力1

作者信息

  • 1. 合肥工业大学 管理学院,安徽 合肥230009;安徽国防科技职业学院 经贸管理学院,安徽 六安237011
  • 折叠

摘要

Abstract

In order to improve the customer churn prediction accuracy of E-commerce customer,and single machine model cannot effectively predict customer churn of massive E-commerce customers, this paper proposes a novel prediction model of customer churn in E-commerce based on online sequential optimization extreme learning machine. Firstly, the Map/Reduce model of cloud computing is used to segment the amount of customer churn in E-commerce,and multiple training subsets are obtained; secondly extreme learning machine is used to model each training subset of E-commerce customer churn,and the prediction results of training subsets are combined to get the final forecast results of customer churn in E-commerce;at last the validity of E-commerce customer churn prediction model is tested by example. The results show that the proposed model improves the prediction accuracy of customer churn in E-commerce,and the training time of E-commerce customer churn modeling has greatly reduced,improving the churn prediction speed of E-commerce customers.

关键词

电子商务/客户流失量/云计算处理技术/预测模型/极限学习机

Key words

E-commerce/ customer churn/ cloud computing technology/ prediction model/ extreme Learning Machine

分类

信息技术与安全科学

引用本文复制引用

杨力..基于在线序列优化极限学习机的电子商务客户流失量预测模型[J].南京理工大学学报(自然科学版),2019,43(1):108-114,7.

基金项目

国家自然科学基金(71871082) (71871082)

安徽省高校人文社会科学研究重大项目(SK2016SD15) (SK2016SD15)

安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016456) (gxyqZD2016456)

南京理工大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1005-9830

访问量0
|
下载量0
段落导航相关论文