| 注册
首页|期刊导航|计算机工程与应用|核张量子空间分解EEG特征提取方法研究

核张量子空间分解EEG特征提取方法研究

高煜妤 王柏娜

计算机工程与应用2019,Vol.55Issue(7):132-137,144,7.
计算机工程与应用2019,Vol.55Issue(7):132-137,144,7.DOI:10.3778/j.issn.1002-8331.1809-0239

核张量子空间分解EEG特征提取方法研究

Kernel Tensor Subspace Decomposition-Based EEG Feature Extraction Method

高煜妤 1王柏娜1

作者信息

  • 1. 燕山大学 里仁学院,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

Aiming at the hypothesis of strict linear model between source signals and recorded EEG signals in the Common Spatial Patterns(CSP), an EEG feature extraction method based on Kernel Tensor Subspace Decomposition(KTSD)is proposed, which can give full play to the advantage of tensors in multidimensional and simultaneous processing. Firstly, the tensor of EEG data is generated, and the tensor decomposition problem is solved by using the least squares problem with quadratic equality constraints, subsequently the tensor is extended to the subspace to reduce the computational pressure. Finally, it is extended to the kernel space to enhance the discrimination ability by projecting data onto high-dimensional feature space. BCI competition III-3a data set is used in the experiment. The experimental results show that KTSD method can extract the corresponding features from EEG data of various motion imagery tasks, and obtain better classification results and operational efficiency.

关键词

EEG数据/核张量/子空间/核空间

Key words

EEG date/kernel tensor/subspace/kernel space

分类

信息技术与安全科学

引用本文复制引用

高煜妤,王柏娜..核张量子空间分解EEG特征提取方法研究[J].计算机工程与应用,2019,55(7):132-137,144,7.

基金项目

重庆市科委项目(No.cstc2017jcyjAX0135). (No.cstc2017jcyjAX0135)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文