| 注册
首页|期刊导航|计算机工程与应用|基于U-Net的高分辨率遥感图像语义分割方法

基于U-Net的高分辨率遥感图像语义分割方法

苏健民 杨岚心 景维鹏

计算机工程与应用2019,Vol.55Issue(7):207-213,7.
计算机工程与应用2019,Vol.55Issue(7):207-213,7.DOI:10.3778/j.issn.1002-8331.1806-0024

基于U-Net的高分辨率遥感图像语义分割方法

U-Net Based Semantic Segmentation Method for High Resolution Remote Sensing Image

苏健民 1杨岚心 1景维鹏1

作者信息

  • 1. 东北林业大学 信息与计算机工程学院,哈尔滨 150040
  • 折叠

摘要

Abstract

Image segmentation is an important base-part of remote sensing interpretation. High resolution remote sensing image contains complex object information, but the applications of traditional segmentation methods are greatly limited. The segmentation method, represented by the deep convolution neural network, has made a breakthrough in many fields. Aiming at the problem of high resolution remote sensing image segmentation, this paper proposes a deep convolution neural network based on U-Net, which achieves the end to end pixel level semantic segmentation. It expands the original dataset, trains a binary classification model for every class of objects, and then combines the prediction subgraphs to generate the final semantic segmentation image, which has helped us get 94% training accuracy and 90% test accuracy on the dataset of AI classification and recognition contest of CCF satellite images. The experimental results show that the network not only has good generalization ability but also can be used in practical engineering with high segmentation accuracy.

关键词

遥感图像/语义分割/卷积神经网络/U-Net/集成学习

Key words

remote sensing image/semantic segmentation/convolutional neural network/U-Net/ensemble learning

分类

信息技术与安全科学

引用本文复制引用

苏健民,杨岚心,景维鹏..基于U-Net的高分辨率遥感图像语义分割方法[J].计算机工程与应用,2019,55(7):207-213,7.

基金项目

东南大学成贤学院2017年大学生实践创新训练计划(No.ycx1709). (No.ycx1709)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文