| 注册
首页|期刊导航|计算机工程与应用|基于注意力卷积模块的深度神经网络图像识别

基于注意力卷积模块的深度神经网络图像识别

袁嘉杰 张灵 陈云华

计算机工程与应用2019,Vol.55Issue(8):9-16,8.
计算机工程与应用2019,Vol.55Issue(8):9-16,8.DOI:10.3778/j.issn.1002-8331.1812-0047

基于注意力卷积模块的深度神经网络图像识别

Deep Neural Network Based on Attention Convolution Module for Image Recognition

袁嘉杰 1张灵 1陈云华1

作者信息

  • 1. 广东工业大学 计算机学院,广州 510006
  • 折叠

摘要

Abstract

For deep fusion in the middle layer branches of deep neural networks, it is a challenge for recent deep neural network research to generate a basic network that can share useful information, thereby optimizing information flow and improving the performance of deep neural networks. In this paper, the deep neural network based on attention convolution module is proposed. The proposed module is mainly divided into two parts:the trunk branch and the soft branch. On the trunk branch, it consists of two sets of residual modules, making the module suitable for other deep neural networks. On the soft branch, the given intermediate feature map is taken along two dimensions(space and channel)to obtain the attention feature map, and the input intermediate feature map is adjusted to strengthen useful information to suppress useless informa-tion. The proposed convolution residual module can solve the problem of inconsistent input and output size, strengthen the key information of the image and effectively promote the information flow of the network. Experiments on the cifar-10, cifar-100, ck+, AVEC2017 data sets show that the proposed method applied to the resnet-50 network has a higher rec-ognition accuracy(0.9%~1.2%)than the method proposed by Hu when the training time difference is less than 0.3%.

关键词

图像识别/残差模块/注意力/深度神经网络

Key words

image identification/ residual module/ attention/ deep neural network

分类

信息技术与安全科学

引用本文复制引用

袁嘉杰,张灵,陈云华..基于注意力卷积模块的深度神经网络图像识别[J].计算机工程与应用,2019,55(8):9-16,8.

基金项目

国家重点研发计划项目(No.2016YFB1000605) (No.2016YFB1000605)

国家自然科学基金(No.11575223). (No.11575223)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文