| 注册
首页|期刊导航|计算机工程与应用|基于卷积神经网络的构件分类策略的研究

基于卷积神经网络的构件分类策略的研究

张富为 杨秋翔 宋超峰

计算机工程与应用2019,Vol.55Issue(8):201-207,7.
计算机工程与应用2019,Vol.55Issue(8):201-207,7.DOI:10.3778/j.issn.1002-8331.1712-0392

基于卷积神经网络的构件分类策略的研究

Research on Component Classification Strategy Based on Convolution Neural Network

张富为 1杨秋翔 1宋超峰1

作者信息

  • 1. 中北大学 软件学院,太原 030051
  • 折叠

摘要

Abstract

To improve the efficiency of component retrieval in software reuse process, advantages and disadvantages of software component classification technology and component features are analyzed. From the aspect of component facet-ing information, convolution neural network technology is used to propose a component based on convolution neural net-work. The convolutional neural network is used to extract the facet features, reduce the human factors, improve the accuracy of faceted information extraction, and train the component classification model based on convolution neural network. Through the specific experiments, the model is demonstrated to improve the efficiency of component retrieval.

关键词

软件复用/软件构件/卷积神经网络/构件分类/构件检索

Key words

software reuse/ software component/ convolution neural network/ component classification/ component retrieval

分类

信息技术与安全科学

引用本文复制引用

张富为,杨秋翔,宋超峰..基于卷积神经网络的构件分类策略的研究[J].计算机工程与应用,2019,55(8):201-207,7.

基金项目

浙江省公益技术研究社会发展项目(No.2016C33016) (No.2016C33016)

浙江理工大学科研启动基金(No.14022086-Y) (No.14022086-Y)

国家自然科学基金(No.61503341). (No.61503341)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文