| 注册
首页|期刊导航|信息与控制|基于增量单类支持向量机的工业控制系统入侵检测

基于增量单类支持向量机的工业控制系统入侵检测

李挺 洪镇南 刘智勇 肖体正

信息与控制2018,Vol.47Issue(6):755-760,6.
信息与控制2018,Vol.47Issue(6):755-760,6.DOI:10.13976/j.cnki.xk.2018.7431

基于增量单类支持向量机的工业控制系统入侵检测

Intrusion Detection Based on Incremental One-class Support Vector Machine for Industrial Control System

李挺 1洪镇南 1刘智勇 2肖体正2

作者信息

  • 1. 南华大学电气工程学院, 湖南 衡阳 421001
  • 2. 珠海鸿瑞信息技术股份有限公司, 广东 珠海 519080
  • 折叠

摘要

Abstract

Intrusion detection in industrial control systems is a challenging problem in industrial networks and is usually characterized by low speed, high cost, and poor scalability. We use the one-class support vector machine (OCSVM) algorithm in a communication model of learning normal behavior from normal Modbus/TCP date sets. As the new sample continues to increase, the current training sample set is reduced from the nearclass interval and Karush-Kuhn-Tucker (KKT) conditions to improve the learning speed, and the reduced training sample set is used in the OCSVM incremental training. Our experimental data analysis shows that this method has higher classification accuracy and improves the learning speed of the intrusion detection system.

关键词

增量学习/入侵检测/单类支持向量机/信息安全

Key words

incremental learning/intrusion detection/one-class support vector machine (OCSVM)/information security

分类

信息技术与安全科学

引用本文复制引用

李挺,洪镇南,刘智勇,肖体正..基于增量单类支持向量机的工业控制系统入侵检测[J].信息与控制,2018,47(6):755-760,6.

基金项目

湖南省自然科学基金资助项目(2017JJ4048) (2017JJ4048)

信息与控制

OA北大核心CSCDCSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文