| 注册
首页|期刊导航|噪声与振动控制|基于复数微分算子的最优化分解方法及其应用

基于复数微分算子的最优化分解方法及其应用

孟祥晶 程军圣 杨宇 潘海洋

噪声与振动控制2019,Vol.39Issue(2):181-185,244,6.
噪声与振动控制2019,Vol.39Issue(2):181-185,244,6.DOI:10.3969/j.issn.1006-1355.2019.02.034

基于复数微分算子的最优化分解方法及其应用

Optimal Decomposition Method based on Complex Differential Operators and Its Application

孟祥晶 1程军圣 1杨宇 1潘海洋2

作者信息

  • 1. 湖南大学 汽车车身先进设计制造国家重点实验室,长沙 410082
  • 2. 湖南大学 汽车车身先进设计制造国家重点实验室,长沙 410082
  • 折叠

摘要

Abstract

For the nonlinear and non-stationary characteristics of mechanical fault vibration signals, an Optimal Decomposition based on Complex Differential Operators (CDOOD) is proposed. In this method, the original non-linear signal is decomposed into several intrinsic narrow-band components (INBCs) through optimizing the filter parameters with the minimum energy of the decomposition margin as the optimization objective. These INBCs are constrained by the complex differential operator in the optimization process. Then, the CDOOD method is applied to the analysis of simulation signals and the composite mechanical signals. This method is compared with the Adaptive Sparsest Time Frequency Analysis (ASTFA) and Empirical Mode Decomposition (EMD). The results show that the CDOOD method is superior to the other two methods in restraining end effects and mode mixing, and improving the orthogonality and accuracy of the components, and can be effectively applied to the diagnosis of composite failure of rotating machinery.

关键词

振动与波/稀疏分解/内禀窄带分量/复数微分算子/机械复合故障诊断

Key words

vibration and wave/ sparse decomposition/ intrinsic narrow-band component/ complex differential operator/ composite fault diagnosis of machinery

分类

机械制造

引用本文复制引用

孟祥晶,程军圣,杨宇,潘海洋..基于复数微分算子的最优化分解方法及其应用[J].噪声与振动控制,2019,39(2):181-185,244,6.

基金项目

国家自然科学基金资助项目(51575168、51875183) (51575168、51875183)

湖南省重点研发计划资助项目(2017GK2182) (2017GK2182)

噪声与振动控制

OACSCDCSTPCD

1006-1355

访问量0
|
下载量0
段落导航相关论文