| 注册
首页|期刊导航|计算机工程与应用|基于卷积神经网络优化TLD运动手势跟踪算法

基于卷积神经网络优化TLD运动手势跟踪算法

王民 李泽洋 王纯 石新源

计算机工程与应用2019,Vol.55Issue(9):151-156,6.
计算机工程与应用2019,Vol.55Issue(9):151-156,6.DOI:10.3778/j.issn.1002-8331.1801-0284

基于卷积神经网络优化TLD运动手势跟踪算法

Optimized Motion Gesture Tracking TLD Algorithm Based on Convolution Neural Network

王民 1李泽洋 1王纯 1石新源1

作者信息

  • 1. 西安建筑科技大学 信息与控制工程学院,西安 710055
  • 折叠

摘要

Abstract

Aiming at the problem that Tracking-Learning-Detection(TLD) algorithm can not track failure under the condi-tions of uneven illumination variation, occlusion and tracking target ambiguity, an optimized motion gesture tracking TLD algorithm based on convolution neural network is proposed. The gesture is taken as the positive sample and the background is taken as the negative sample. HOG feature is obtained and put into the convolution neural network for training, the gesture detection classifier is gotten. The target gesture area is determined and the automatic recognition of gesture is achieved. TLD algorithm is then used to track and learn the hand gesture, and the positive and negative samples are estimated and detected in real time. At the same time, SURF feature matching is used to update the tracker. Experimental results show that the proposed algorithm can improve the tracking accuracy by 4.24% compared with the original TLD algorithm. This method enhances the tracking effect of motion gesture, which is more robust than the traditional tracking algorithm.

关键词

卷积神经网络/TLD算法/手势跟踪/HOG特征/SURF特征

Key words

convolution neural network/ Tracking-Learning-Detection(TLD)algorithm/ gesture tracking/ HOG feature/SURF feature

分类

信息技术与安全科学

引用本文复制引用

王民,李泽洋,王纯,石新源..基于卷积神经网络优化TLD运动手势跟踪算法[J].计算机工程与应用,2019,55(9):151-156,6.

基金项目

住房和城乡建设部科学技术项目计划(No.2016-R2-045) (No.2016-R2-045)

陕西省自然科学基础研究资金(No.2014JM8343) (No.2014JM8343)

陕西省自然科学基金青年基金(No.2013JQ8003). (No.2013JQ8003)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量3
|
下载量0
段落导航相关论文