| 注册
首页|期刊导航|计算机与数字工程|一种基于稠密卷积网络和竞争架构的改进路径规划算法

一种基于稠密卷积网络和竞争架构的改进路径规划算法

黄颖 余玉琴

计算机与数字工程2019,Vol.47Issue(4):812-819,8.
计算机与数字工程2019,Vol.47Issue(4):812-819,8.DOI:10.3969/j.issn.1672-9722.2019.04.014

一种基于稠密卷积网络和竞争架构的改进路径规划算法

An Improved Path Planning Algorithm Based on Densely Connected Convolutional Network and Dueling Network Architecture

黄颖 1余玉琴1

作者信息

  • 1. 上海理工大学光电信息与计算机工程学院 上海 200093
  • 折叠

摘要

Abstract

When the existing deep Q-networks are used in path planning domain,they surfer with overestimations of ac?tion-state values and can't meet the need for real-time path planning. So,an improved path planning algorithm based on densely connected convolutional network and dueling network architecture is proposed. Firstly,a network that fused simplified densely con?nected convolutional network with dueling network architecture is proposed,which is a lighter deep network for deep reinforcement learning. Then reinforcement learning methods are used to solve the path planning problem and train the proposed network by double deep Q-network(DDQN)algorithm to approximate the optimal action-state value function. Finally,experiments in the customized gridmap environment are done. Experiments demonstrate that our proposed algorithm can not only obtain less parameters,computa?tion time and lower training expense,and meet the need for real-time path planning,but also can lead to more state-of-the-art per?formance on route planning domain which can increase the path planning success rate by about 5% on average with great generaliza?tion ability of rapidly changing environments.

关键词

深度强化学习/路径规划/稠密卷积网络/竞争网络架构/双重深度Q网络

Key words

deep reinforcement learning/path planning/densely connected convolutional network/dueling network archi⁃tecture/double deep Q-network

分类

信息技术与安全科学

引用本文复制引用

黄颖,余玉琴..一种基于稠密卷积网络和竞争架构的改进路径规划算法[J].计算机与数字工程,2019,47(4):812-819,8.

基金项目

国家自然科学基金(编号:61603255,61673276)资助. (编号:61603255,61673276)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文