| 注册
首页|期刊导航|计算机与数字工程|基于改进的残差神经网络的服装标签属性识别

基于改进的残差神经网络的服装标签属性识别

张萌岩 何儒汉 詹伟 李敏 陈佳

计算机与数字工程2019,Vol.47Issue(4):933-939,7.
计算机与数字工程2019,Vol.47Issue(4):933-939,7.DOI:10.3969/j.issn.1672-9722.2019.04.038

基于改进的残差神经网络的服装标签属性识别

Recognition of Clothing Tag Attribute Based on Improved Residual Neural Network

张萌岩 1何儒汉 1詹伟 1李敏 1陈佳1

作者信息

  • 1. 武汉纺织大学湖北省服装信息化工程技术研究中心 武汉 430200
  • 折叠

摘要

Abstract

In recent years,the rapid development of clothing e-commerce has made the recognition of clothing tag attribute have a wide market demand,and the particularity of clothing images itself makes it more challenging to identify. In view of the great success of deep learning algorithms in many fields such as speech recognition and image processing,this paper designs a deep learn?ing model based on the residual neural network ResNet50,namely Res-FashionAINet,to apply it to the recognition of clothing tag attribute. Through three steps of data preprocessing,model training and attribute prediction,experiments are carried out on the FashionAI dataset composed of clothing pictures from real shopping platforms. The recognition accuracy rate is higher,and there is a certain advantage in the recognition of attribute tags for clothing images.

关键词

服装图像/属性标签识别/深度学习算法/残差神经网络/FashionAI数据集

Key words

clothing images/attribute tags recognition/deep learning algorithm/residual neural network/FashionAI dataset

分类

信息技术与安全科学

引用本文复制引用

张萌岩,何儒汉,詹伟,李敏,陈佳..基于改进的残差神经网络的服装标签属性识别[J].计算机与数字工程,2019,47(4):933-939,7.

基金项目

中央级公益性科研院所基本科研业务费专项资金"微型消防站监测与应急指挥系统"(编号:C17392)资助. (编号:C17392)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文