| 注册
首页|期刊导航|传感技术学报|基于脑电信号的情绪特征提取与分类

基于脑电信号的情绪特征提取与分类

柳长源 李文强 毕晓君

传感技术学报2019,Vol.32Issue(1):82-88,7.
传感技术学报2019,Vol.32Issue(1):82-88,7.DOI:10.3969/j.issn.1004-1699.2019.01.015

基于脑电信号的情绪特征提取与分类

Emotional Feature Extraction and Classification Based on EEG Signals

柳长源 1李文强 2毕晓君1

作者信息

  • 1. 哈尔滨理工大学电气与电子工程学院, 哈尔滨 150080
  • 2. 哈尔滨工程大学信息与通信工程学院, 哈尔滨 150009
  • 折叠

摘要

Abstract

As an advanced function of human brain, emotion has a great impact on people's personality characteristics and mental health. By using the online Deap database, emotions are divided according to psychological valence and arousal level, and the two emotions of stress and calm are studied and analyzed. On the basis of using db4 wavelet decomposition and reconstruction algorithm to decompose the signal, according to the characteristics of the asymmetry of EEG signals in the generation of emotions, a new method of emotional feature extraction is proposed, By dividing the differential entropy of right leads by the difference between left and right symmetrical electrodes, and dividing the differential entropy of right leads by the sum of the differential entropy of left and right symmetrical electrodes, the asymmetric entropy characteristics of EEG signals is extracted. Using the support vector machine optimized by genetic algorithm for emotion classification recognition, the average recognition rate is 88.625%.Comparing with the classification recognition rate of traditional features, the classification recognition rate using the asymmetric entropy feature is significantly improved.

关键词

脑电信号/情绪识别/小波分解/不对称熵/支持向量机/遗传算法

Key words

EEG signal/emotion recognition/wavelet decomposition/asymmetric entropy/support vector machine/genetic algorithm

分类

信息技术与安全科学

引用本文复制引用

柳长源,李文强,毕晓君..基于脑电信号的情绪特征提取与分类[J].传感技术学报,2019,32(1):82-88,7.

基金项目

国家自然科学基金项目(51779050) (51779050)

黑龙江省自然科学基金项目(F2016022) (F2016022)

传感技术学报

OA北大核心CSCDCSTPCD

1004-1699

访问量0
|
下载量0
段落导航相关论文