| 注册
首页|期刊导航|长江科学院院报|应用GA-BP神经网络预估砾类土的最大干密度

应用GA-BP神经网络预估砾类土的最大干密度

饶云康 丁瑜 许文年 张亮 张恒 潘波

长江科学院院报2019,Vol.36Issue(4):88-92,5.
长江科学院院报2019,Vol.36Issue(4):88-92,5.DOI:10.11988/ckyyb.20180281

应用GA-BP神经网络预估砾类土的最大干密度

Estimating Maximum Dry Density of Gravel Soil by Back Propagation Neural Network Optimized by Genetic Algorithm

饶云康 1丁瑜 1许文年 2张亮 3张恒 1潘波2

作者信息

  • 1. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
  • 2. 三峡大学 防灾减灾湖北省重点实验室,湖北 宜昌 443002
  • 3. 三峡地区地质灾害与生态环境湖北省协同创新中心,湖北 宜昌 443002
  • 折叠

摘要

Abstract

A model of estimating the maximum dry density of gravel soil is established to provide reference for con-trolling the compaction quality of gravel soil projects and selecting the gravel soil which meets engineering require-ments. In the light that particle gradation is the crucial factor that determines the maximum dry density of gravel soil, 92 groups of data of gravel soil are collected and obtained, of which full gradation ( d10-d100) is used as the in-put variable of back propagation ( BP) neural network. Furthermore, genetic algorithm (GA) is adopted to optimize the initial weights and thresholds of the BP neural network, based on which the estimation model for maximum dry density of gravel soil is constructed. In addition, the GA-BP neural network model is compared with BP neural net-work model. According to estimation results, the mean relative error of the predicted results of 86 groups of training samples is 0.54%, and the coefficient of determination is 0.983; the mean relative error of the predicted results of 6 groups of test samples is 0.57%, which indicates that the proposed model is of good generalization performance. It is concluded that the maximum dry density of gravel soil could be well predicted by applying GA-BP neural network

关键词

砾类土/最大干密度/全级配/GA-BP神经网络/遗传算法

Key words

gravel soil/ maximum dry density/ full gradation/ GA-BP neural network/ genetic algorithm

分类

建筑与水利

引用本文复制引用

饶云康,丁瑜,许文年,张亮,张恒,潘波..应用GA-BP神经网络预估砾类土的最大干密度[J].长江科学院院报,2019,36(4):88-92,5.

基金项目

国家自然科学基金项目(51879246,51408439) (51879246,51408439)

铁道部科技研究开发资助项目(2010G003-F) (2010G003-F)

潍坊市科技发展计划资助项目(2017GX083) (2017GX083)

中国海洋大学青年英才工程计划项目(841717014) (841717014)

山东省职业教育技艺技能传承创新平台(公路工程智慧检测技术传承创新平台)资助项目 (公路工程智慧检测技术传承创新平台)

长江科学院院报

OA北大核心CSCDCSTPCD

1001-5485

访问量0
|
下载量0
段落导航相关论文