| 注册
首页|期刊导航|电力系统自动化|深度神经网络在非侵入式负荷分解中的应用

深度神经网络在非侵入式负荷分解中的应用

燕续峰 翟少鹏 王治华 王芬 何光宇

电力系统自动化2019,Vol.43Issue(1):126-132,167,8.
电力系统自动化2019,Vol.43Issue(1):126-132,167,8.DOI:10.7500/AEPS20180629004

深度神经网络在非侵入式负荷分解中的应用

Application of Deep Neural Network in Non-intrusive Load Disaggregation

燕续峰 1翟少鹏 1王治华 2王芬 1何光宇1

作者信息

  • 1. 上海交通大学电子信息与电气工程学院, 上海市 200240
  • 2. 国网上海市电力公司电力调度控制中心, 上海市 200122
  • 折叠

摘要

Abstract

Load monitoring is an important part of intelligent electricity consumption.For the non-intrusive load monitoring, a deep neural network based non-intrusive load disaggregation method is proposed.Firstly, a modified iterative appliance state clustering algorithm is proposed.By modifying the stopping criteria and adding eliminating criteria of redundant clusters, the clustering results are more consistent with the actual appliance operation.An appliance time characteristic model is proposed considering weak time characteristics of hidden Markov models which are commonly used in the current study.The appliance characteristics and user habits are taken into consideration.The electrical appliances are modeled from the perspective of time.A deep neural network is constructed to perform load disaggregation.The input of the network includes appliance states, power and time information.The history data and the generated data based on models are used to train the network parameters.The effectiveness and accuracy of the method are verified on the data set.

关键词

非侵入式负荷监测/电器状态聚类/时间特性模型/深度神经网络

Key words

non-intrusive load monitoring/appliance state clustering/time characteristic model/deep neural network

引用本文复制引用

燕续峰,翟少鹏,王治华,王芬,何光宇..深度神经网络在非侵入式负荷分解中的应用[J].电力系统自动化,2019,43(1):126-132,167,8.

基金项目

国家自然科学基金资助项目(51877134) This work is supported by National Natural Science Foundation of China (No. 51877134). (51877134)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文