| 注册
首页|期刊导航|电力系统自动化|基于多层极限学习机的电力系统频率安全评估方法

基于多层极限学习机的电力系统频率安全评估方法

文云峰 赵荣臻 肖友强 刘祯斌

电力系统自动化2019,Vol.43Issue(1):133-140,8.
电力系统自动化2019,Vol.43Issue(1):133-140,8.DOI:10.7500/AEPS20180629012

基于多层极限学习机的电力系统频率安全评估方法

Frequency Safety Assessment of Power System Based on Multi-layer Extreme Learning Machine

文云峰 1赵荣臻 2肖友强 3刘祯斌4

作者信息

  • 1. 湖南大学电气与信息工程学院, 湖南省长沙市 410000
  • 2. 重庆大学电气工程学院, 重庆市 400044
  • 3. 云南电网规划建设研究中心, 云南省昆明市 650011
  • 4. 中国建筑第七工程局有限公司, 深圳市 518116
  • 折叠

摘要

Abstract

The random, intermittent and weak inertia characteristics of renewable energy generation have led to a prominent problem in the frequency safety of high-rate renewable energy power systems.The use of time-domain simulation for frequency safety assessment has the disadvantages of large amount of calculation and long time.It is difficult to meet the rapid assessment requirement of frequency safety under thecombined explosion"of multiple complex uncertainties.In order to realize online analysis and prediction of frequency safety, a method based on multi-layer extreme learning machine (ML-ELM) is applied.The non-linear mapping relationship between the input layer and the hidden layer is built by the deep structure theory and in the layer-wise unsupervised training, automatic encoder algorithms and regularization coefficients are introduced to optimize the weight matrix between the input layer and the hidden layer, so that the ML-ELM can effectively represent complex functions and improve predictive accuracy and generalization ability.Case studies of the IEEE RTS-79 system demonstrate the rapidity, high accuracy and well generalization ability of the proposed method.

关键词

频率安全/极限学习机/低惯性系统/机器学习/人工智能/大数据

Key words

frequency safety/extreme learning machine (ELM)/low inertia system/machine learning/artificial intelligence (AI)/big data

引用本文复制引用

文云峰,赵荣臻,肖友强,刘祯斌..基于多层极限学习机的电力系统频率安全评估方法[J].电力系统自动化,2019,43(1):133-140,8.

基金项目

国家自然科学基金资助项目(51707017) (51707017)

重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0422) (cstc2017jcyjAX0422)

中央高校基本科研业务费专项资金资助项目 This work is supported by National Natural Science Foundation of China (No. 51707017) , Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2017jcyjAX0422) and Fundamental Research Funds for the Central Universities. (No. 51707017)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文