| 注册
首页|期刊导航|电器与能效管理技术|基于改进模型和无迹卡尔曼滤波的锂离子电池荷电状态估计

基于改进模型和无迹卡尔曼滤波的锂离子电池荷电状态估计

任军 王凯 任宝森

电器与能效管理技术Issue(4):64-70,78,8.
电器与能效管理技术Issue(4):64-70,78,8.DOI:10.16628/j.cnki.2095-8188.2019.04.012

基于改进模型和无迹卡尔曼滤波的锂离子电池荷电状态估计

State of Charge Estimation of Lithium-ion Battery Based on Improved Model and Unscented Kalman Filter

任军 1王凯 1任宝森2

作者信息

  • 1. 青岛大学 电气工程学院,山东 青岛 266071
  • 2. 国家电网山东省检修公司,山东 临沂 276000
  • 折叠

摘要

Abstract

The estimation of the state of charge (SOC) of power lithium-ion battery is the core and key technology of battery management system.The traditional ampere-hour integration method will produce the cumulative error which causes the result non-convergent.The Kalman filter method with first-order Thevenin equivalent circuit model can not obtain a better estimation result because of the limited model precision.Based on the two-order Thevenin equivalent circuit model, this paper uses the unscented Kalman filter (UKF) algorithm to modify the results of the improved ampere-hour integration method and improves the accuracy of SOC estimation.The SOC estimation experiments of the battery were carried out under 3 different working conditions.The experimental results show that the UKF algorithm with the two-order Thevenin equivalent circuit model can quickly converge in SOC estimation and obtain a high accuracy.

关键词

锂离子电池/SOC估算/二阶Thevenin模型/无迹卡尔曼滤波

Key words

lithium-ion battery/SOC estimation/two-order Thevenin model/unscented Kalman filter

分类

信息技术与安全科学

引用本文复制引用

任军,王凯,任宝森..基于改进模型和无迹卡尔曼滤波的锂离子电池荷电状态估计[J].电器与能效管理技术,2019,(4):64-70,78,8.

基金项目

青岛市博士后基金 (2015118) (2015118)

山东省科技发展计划 (2017GGX50114) (2017GGX50114)

电器与能效管理技术

2095-8188

访问量0
|
下载量0
段落导航相关论文