| 注册
首页|期刊导航|光学精密工程|基于调整步长牛顿法的Stewart并联机构位置正解

基于调整步长牛顿法的Stewart并联机构位置正解

强红宾 王力航 姜雪 张立杰

光学精密工程2018,Vol.26Issue(12):2982-2990,9.
光学精密工程2018,Vol.26Issue(12):2982-2990,9.DOI:10.3788/OPE.20182612.2982

基于调整步长牛顿法的Stewart并联机构位置正解

Forward kinematics of Stewart parallel manipulator based on step-adjusting Newton method

强红宾 1王力航 1姜雪 1张立杰1

作者信息

  • 1. 燕山大学 河北省重型机械流体动力传输与控制重点实验室,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

Forward kinematics of the near singular position of the Stewart parallel manipulator based on the Newton method or quasi-Newton method are not converge;Newton downhill method is timeconsuming, sometimes.To resolve the situation, a method of applying the step-adjusting Newton method to a parallel manipulator is proposed.Firstly, the process of forward kinematics of the Stewart parallel manipulator based on the step-adjusting Newton method was designed.Then, the fewest iterative steps in the forward kinematics of sixty-four kinds of utmost poses was used as the objective function.The initial values of the step matrix and geometric parameters were taken as design variables by genetic algorithm to obtain the optimal values.Numerical examples show that when the absoluteerror of the rod length was set as 0.01 mm, in solving the forward kinematics of sixty-four kinds of utmost poses, the Newton method or quasi-Newton method did not converge on six kinds of utmost poses.The Newton downhill method takes longer than 2.0 ms on ten kinds of utmost poses, while the time taken by the stepadjusting Newton method was less than 2.0 ms.The step-adjusting Newton method provides theoretical guidance for the forward kinematics of the Stewart parallel manipulator in real-time occasions.

关键词

位置正解/Stewart并联机构/调整步长牛顿法/步长矩阵

Key words

forward kinematics/Stewart parallel manipulator/step-adjusting newton method/step-matrix

分类

信息技术与安全科学

引用本文复制引用

强红宾,王力航,姜雪,张立杰..基于调整步长牛顿法的Stewart并联机构位置正解[J].光学精密工程,2018,26(12):2982-2990,9.

基金项目

国家自然科学基金资助项目(No.51875499) (No.51875499)

光学精密工程

OA北大核心CSCDCSTPCD

1004-924X

访问量0
|
下载量0
段落导航相关论文