| 注册
首页|期刊导航|计算机工程|基于参考点的改进k近邻分类算法

基于参考点的改进k近邻分类算法

梁聪 夏书银 陈子忠

计算机工程2019,Vol.45Issue(2):167-172,6.
计算机工程2019,Vol.45Issue(2):167-172,6.DOI:10.19678/j.issn.1000-3428.0049901

基于参考点的改进k近邻分类算法

Improvement k-Nearest Neighbor Classification Algorithm Based on Reference Points

梁聪 1夏书银 1陈子忠1

作者信息

  • 1. 重庆邮电大学 计算机科学与技术学院, 重庆 400065
  • 折叠

摘要

Abstract

The basic k-Nearest Neighbor (kNN) classification algorithm has quadratic time complexity, has a low classification efficiency and has a low classification accuracy. Aiming at this problem, an improvement reference points kNN classification algorithm is proposed. The reference point is selected according to the variance of the point-to-sample distance, and the reference point is given an adaptive weight. Experimental results show that compared with the basic kNN algorithm and kd-tree neighbor algorithm, this algorithm has high classification accuracy and has low time complexity.

关键词

k近邻/参考点/自适应权重/方差/分类效率

Key words

k-Nearest Neighbor (kNN)/reference points/self-adaptive weight/variance/classification efficiency

分类

信息技术与安全科学

引用本文复制引用

梁聪,夏书银,陈子忠..基于参考点的改进k近邻分类算法[J].计算机工程,2019,45(2):167-172,6.

基金项目

国家重点研发计划 (2016QY01W0200, 2016YFB1000905) (2016QY01W0200, 2016YFB1000905)

重庆市教委科学技术研究项目 (KJ1600426, KJ1600419). (KJ1600426, KJ1600419)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文