| 注册
首页|期刊导航|计算机工程|基于改进TextRank算法的中文文本摘要提取

基于改进TextRank算法的中文文本摘要提取

徐馨韬 柴小丽 谢彬 沈晨 王敬平

计算机工程2019,Vol.45Issue(3):273-277,5.
计算机工程2019,Vol.45Issue(3):273-277,5.DOI:10.19678/j.issn.1000-3428.0051615

基于改进TextRank算法的中文文本摘要提取

Extraction of Chinese Text Summarization Based on Improved TextRank Algorithm

徐馨韬 1柴小丽 1谢彬 1沈晨 1王敬平1

作者信息

  • 1. 中国电子科技集团公司第三十二研究所,上海 201808
  • 折叠

摘要

Abstract

This paper proposes a Chinese text summarization extraction algorithm, called DK-TextRank, combines Doc2Vec model, K-means and TextRank algorithm for Chinese texts to improve summarization accuracy.After using the Doc2Vec model for text vectorization, the DK-TextRank algorithm uses an improved K-means algorithm for similar text clustering, and the TextRank algorithm with weight impact factors in each cluster to sort and extract topic sentence.Then, it generates a summary.Experimental results show that, compared with traditional TF-IDF, TextRank algorithm, the DK-TextRank algorithm has an F value of 79.36% when the number of summary statements is 7, and the extracted abstract has higher quality.

关键词

Doc2Vec模型/K-means算法/TextRank算法/摘要提取/权重影响因子

Key words

Doc2Vec model/K-means algorithm/TextRank algorithm/summarization extraction/weight influence factor

分类

信息技术与安全科学

引用本文复制引用

徐馨韬,柴小丽,谢彬,沈晨,王敬平..基于改进TextRank算法的中文文本摘要提取[J].计算机工程,2019,45(3):273-277,5.

基金项目

国家部委基金. ()

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量4
|
下载量0
段落导航相关论文