| 注册
首页|期刊导航|计算机工程与科学|基于注意力机制的文本情感倾向性研究

基于注意力机制的文本情感倾向性研究

裴颂文 王露露

计算机工程与科学2019,Vol.41Issue(2):343-353,11.
计算机工程与科学2019,Vol.41Issue(2):343-353,11.DOI:10.3969/j.issn.1007-130X.2019.02.022

基于注意力机制的文本情感倾向性研究

Text sentiment analysis based on attention mechanism

裴颂文 1王露露2

作者信息

  • 1. 上海理工大学光电信息与计算机工程学院, 上海 200093
  • 2. 复旦大学管理学院, 上海 200433
  • 折叠

摘要

Abstract

As an important branch of sentiment analysis, short-text sentiment classification on social media has attracted more and more researchers' attention. To improve the accuracy of the short text target-based sentiment classification, we propose a network model that combines the part-of-speech attention mechanism with long short-term memory (PAT-LSTM). The text and the target are mapped to a vector within a certain threshold range. In addition, each word in the sentence is marked by the part-of-speech. The text vector, target vector and part-of-speech vector are then input into the model. The PAT-LSTM model can fully explore the relationship between target words and emotional words in a sentence, and it does not require syntactic analysis of sentences or external knowledge such as sentiment lexicon. The results of comparative experiments on the Eval2014 Task4 dataset show that the PAT-LSTM network model has higher accuracy in attention-based sentiment classification.

关键词

注意力机制/长短时记忆网络/短文本/情感分析

Key words

attention mechanism/LSTM/short text/sentiment analysis

分类

信息技术与安全科学

引用本文复制引用

裴颂文,王露露..基于注意力机制的文本情感倾向性研究[J].计算机工程与科学,2019,41(2):343-353,11.

基金项目

上海市浦江人才计划(16PJ1407600) (16PJ1407600)

中国博士后科学基金(2017M610230) (2017M610230)

国家自然科学基金(61332009,61775139) (61332009,61775139)

计算机体系结构国家重点实验室开放题目(CARCH201807) (CARCH201807)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文