| 注册
首页|期刊导航|计算机工程与应用|改进多尺度卷积神经网络的单幅图像去雾方法

改进多尺度卷积神经网络的单幅图像去雾方法

雎青青 李朝锋 桑庆兵

计算机工程与应用2019,Vol.55Issue(10):179-185,7.
计算机工程与应用2019,Vol.55Issue(10):179-185,7.DOI:10.3778/j.issn.1002-8331.1806-0408

改进多尺度卷积神经网络的单幅图像去雾方法

Single Image Dehazing by Using Improved Multi-Scale Convolutional Neural Network

雎青青 1李朝锋 2桑庆兵3

作者信息

  • 1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 2. 上海海事大学 物流科学与工程研究院,上海 200135
  • 3. 江南大学 物联网工程学院,江苏 无锡 214122
  • 折叠

摘要

Abstract

As the current reported dehazing method is easy to cause halo and color distortion in the sky region, a single image dehazing algorithm by combining multi-scale convolution with scattering model is proposed. Firstly, the original haze image is convoluted with three different scales of convolution kernels. After a series of characteristic learning, the rough transmission is obtained. Then the transmission map is refined by using the guided filter. Secondly, according to the haze image and rough transmission, the global atmospheric light is known. Finally, with the refined transmission map and the calculated atmospheric light, the final dehazed image is inversely derived from the atmospheric scattering model. Experimental results show that the proposed algorithm is more natural to deal with the sky area, and it has better restora-tion effect on image texture and color distortion.

关键词

图像去雾/图像复原/多尺度卷积/散射模型

Key words

image dehazing/image restoration/multi-scale convolution/scattering model

分类

信息技术与安全科学

引用本文复制引用

雎青青,李朝锋,桑庆兵..改进多尺度卷积神经网络的单幅图像去雾方法[J].计算机工程与应用,2019,55(10):179-185,7.

基金项目

国家自然科学基金(No.61373116) (No.61373116)

陕西省科技统筹创新工程计划项目(No.2016KTZDGY04-01) (No.2016KTZDGY04-01)

陕西省工业领域一般项目(No.2018GY-013) (No.2018GY-013)

陕西省教育厅项目(No.18JK0697) (No.18JK0697)

西安市科技局科技计划项目(No.2017084CG/RC047 (XAYD001)) (No.2017084CG/RC047 (XAYD001)

咸阳市科技局项目(No.2017k01-25-3). (No.2017k01-25-3)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文