| 注册
首页|期刊导航|计算机与数字工程|多特征融合与尺度自适应核相关滤波跟踪算法

多特征融合与尺度自适应核相关滤波跟踪算法

冯汉 王永雄 张孙杰

计算机与数字工程2019,Vol.47Issue(5):1125-1130,6.
计算机与数字工程2019,Vol.47Issue(5):1125-1130,6.DOI:10.3969/j.issn.1672-9722.2019.05.022

多特征融合与尺度自适应核相关滤波跟踪算法

Object Tracking Based on Kernel Correlation Filter with Multi-features Fusion and Adaptive Scale

冯汉 1王永雄 1张孙杰1

作者信息

  • 1. 上海理工大学光电信息与计算机工程学院 上海 200093
  • 折叠

摘要

Abstract

To deal with the limitations of using single feature and fixed scale in the traditional Kernelized Correlation Filters, an adaptive tracking algorithm based on KCF with multi-features fusion and adaptive scale is proposed. The feature map of the target is combined color attribute and HOG features. The computation PCA is used to obtain the discriminative CN features. The adaptive scale filter is designed to dynamically adjust the target scale. The scale filter and translation filter are trained and optimized indepen?dently. This proposed tracking algorithm is robust and real-time. Moreover,it performs better than other KCF in complex factors, such as appearance variety,scale variation,illumination variation and so on.

关键词

目标跟踪/核相关滤波/尺度自适应/特征融合

Key words

object tracking/kernelized correlation filters/adaptive scale/feature fusion

分类

信息技术与安全科学

引用本文复制引用

冯汉,王永雄,张孙杰..多特征融合与尺度自适应核相关滤波跟踪算法[J].计算机与数字工程,2019,47(5):1125-1130,6.

基金项目

国家自然科学基金项目(编号:61673276,61603255,61703255)资助. (编号:61673276,61603255,61703255)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文