| 注册
首页|期刊导航|计算机与数字工程|基于高速收费大数据的短时交通流量预测方法

基于高速收费大数据的短时交通流量预测方法

刘艳丽 赵卓峰 丁维龙 徐扬

计算机与数字工程2019,Vol.47Issue(5):1164-1169,1188,7.
计算机与数字工程2019,Vol.47Issue(5):1164-1169,1188,7.DOI:10.3969/j.issn.1672-9722.2019.05.029

基于高速收费大数据的短时交通流量预测方法

Short-term Traffic Flow Forecasting Method Based on Big Charging Data

刘艳丽 1赵卓峰 2丁维龙 1徐扬2

作者信息

  • 1. 北方工业大学计算机学院 北京 100043
  • 2. 大规模流数据集成与分析技术北京市重点实验室 北京 100043
  • 折叠

摘要

Abstract

The short-term traffic flow forecast of highway is of great significance to the operation and management of highway and the improvement of highway operation efficiency. The large data of expressway charges are massive,real-time,complex and dy?namic,while the traditional time series model has the advantages of complex modeling and poor adaptability. In order to improve the accuracy of traffic flow forecasting and use the big toll data,the improved ARIMA(Autoregressive Integrated Moving Average Mod?el)is proposed to optimize the model from the aspects of model identification and parameter adjustment. Experiments based on real data show that the improved time series model effectively overcomes the shortcomings of the traditional time series model and has good adaptability to different traffic conditions,and has higher prediction accuracy both on holiday and working day.

关键词

交通流量/短时预测/时间序列/ARIMA

Key words

traffic flow/short-term prediction/time series/ARIMA

分类

信息技术与安全科学

引用本文复制引用

刘艳丽,赵卓峰,丁维龙,徐扬..基于高速收费大数据的短时交通流量预测方法[J].计算机与数字工程,2019,47(5):1164-1169,1188,7.

基金项目

北京市自然科学基金(编号:4162021) (编号:4162021)

国家自然科学基金(编号:61702014)资助. (编号:61702014)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文