| 注册
首页|期刊导航|计算机与数字工程|基于深度学习的无人机故障诊断方法研究

基于深度学习的无人机故障诊断方法研究

李炜 崔佳佳

计算机与数字工程2019,Vol.47Issue(5):1249-1253,5.
计算机与数字工程2019,Vol.47Issue(5):1249-1253,5.DOI:10.3969/j.issn.1672-9722.2019.05.046

基于深度学习的无人机故障诊断方法研究

Research on Fault Diagnosis Method of UAV Based on Deep Learning

李炜 1崔佳佳2

作者信息

  • 1. 兰州理工大学电气工程与信息工程学院 兰州 730050
  • 2. 甘肃省工业过程先进控制重点实验室 兰州 730050
  • 折叠

摘要

Abstract

Due to the high coupling of the quadrotor UAV system,it is difficult to establish the appropriate system model,the accuracy of fault diagnosis is low. At the same time,due to the complex working environment of UAV,it is easy to be affected by the external and internal noise,which makes most methods have the problem of insufficient robustness. Therefore,this paper proposes the Stacked Denoising Autoencoder(SDA)fault diagnosis method. It not only does not rely too much on the system model,but also enhances its robustness and improves the accuracy of fault diagnosis. The simulation results show that the UAV fault diagnosis meth?od based on SDA can correctly and reliably judge the fault type of the actuator,and effectively improve the safety and reliability of the four rotor UAV system.

关键词

四旋翼无人机/栈式降噪自编码/鲁棒性

Key words

quadrotor UAV/stacked denoising autoencoder/robustness

分类

航空航天

引用本文复制引用

李炜,崔佳佳..基于深度学习的无人机故障诊断方法研究[J].计算机与数字工程,2019,47(5):1249-1253,5.

基金项目

国家自然科学基金项目(编号:61364011)资助. (编号:61364011)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文