| 注册
首页|期刊导航|大气科学学报|基于生成对抗网络GAN的人工智能临近预报方法研究

基于生成对抗网络GAN的人工智能临近预报方法研究

陈元昭 林良勋 王蕊 兰红平 叶允明 陈训来

大气科学学报2019,Vol.42Issue(2):311-320,10.
大气科学学报2019,Vol.42Issue(2):311-320,10.DOI:10.13878/j.cnki.dqkxxb.20190117001

基于生成对抗网络GAN的人工智能临近预报方法研究

A study on the artificial intelligence nowcasting based on generative adversarial networks

陈元昭 1林良勋 2王蕊 1兰红平 1叶允明 3陈训来1

作者信息

  • 1. 深圳市气象局,广东 深圳 518040
  • 2. 广东省气象台,广东 广州 510080
  • 3. 哈尔滨工业大学(深圳),广东 深圳 518040
  • 折叠

摘要

Abstract

Artificial intelligence nowcasting based on generative adversarial networks (GAN) has been conducted by using abundant radar echo images from 12 S-band Doppler radars in Guangdong province during the period from2015 to 2017.Radar echo images were convoluted for 5 times in order to build the initial forecasting model.Afterwards, several confrontation trainings took place between the model images and real radar echo images, resulting in the loss function.The model was optimized constantly.Given that the model images were similar to the real radar echo images, the outputs of optimum model would be used for nowcasting.The experiments of four precipitation events in Guangdong province during 2018 suggested that the 60 min forecasted position, shape and intensity of radar echo in convective systems by GAN mostly coincide with the observations.However, the forecasted area of strong radar echo is larger than that of the observed radar echo.Furthermore, the GAN method could not forecast the precipitation caused by stratus clouds well.The GAN method could forecast moderate radar echoes quite well, while its forecast capability for strong radar echoes needs to be improved.

关键词

人工智能/生成对抗网络/雷达回波/临近预报

Key words

artificial intelligence/generative adversarial networks/radar echo/nowcasting

引用本文复制引用

陈元昭,林良勋,王蕊,兰红平,叶允明,陈训来..基于生成对抗网络GAN的人工智能临近预报方法研究[J].大气科学学报,2019,42(2):311-320,10.

基金项目

中国气象局预报员专项(CMAYBY2017-052 ()

CMAYBY2019-081) ()

深圳市科技创新项目(JCYJ20190422090117011) (JCYJ20190422090117011)

广东省气象局科技创新项目(GRMC-2016-04 ()

GRMC2018Z06) ()

大气科学学报

OA北大核心CSCDCSTPCD

1674-7097

访问量0
|
下载量0
段落导航相关论文