| 注册
首页|期刊导航|南京信息工程大学学报|基于多模态的音乐推荐系统

基于多模态的音乐推荐系统

龚志 邵曦

南京信息工程大学学报2019,Vol.11Issue(1):68-76,9.
南京信息工程大学学报2019,Vol.11Issue(1):68-76,9.DOI:10.13878/j.cnki.jnuist.2019.01.013

基于多模态的音乐推荐系统

A music recommendation system based on multi-modal fusion

龚志 1邵曦1

作者信息

  • 1. 南京邮电大学 通信与信息工程学院, 南京, 210003
  • 折叠

摘要

Abstract

Despite the continuous enrichment of music, the underlying music features are often overlooked when using traditional collaborative filtering.By multi-modal fusion of audio features and lyric information and supplementing the fusion information feature as a collaborative filtering recommendation, a multi-modal music recommendation system is proposed.This studyprimarily discusses the extraction of audio features and lyrics information and uses the LDA topic model to reduce the character dimension of the lyrics information. For the multi-model fusion problem, this study proposes an EFFC fusion method, and compares the results of multi-modal fusion with the results using single-mode.For result recommendations, the user interest model is established based on the multi-modal information feature with the input of LSTM networks to filter and optimize the user group.The results show that the multi-modal music recommendation system reduces the SSE of the result from 2. 009 to 0. 388 6, verifying the effectiveness of the method.

关键词

音乐推荐/协同过滤/LDA主题模型/多模态融合/LSTM神经网络

Key words

music recommendation/collaborative filtering/LDA topic model/multi-modal fusion/LSTM networks

分类

信息技术与安全科学

引用本文复制引用

龚志,邵曦..基于多模态的音乐推荐系统[J].南京信息工程大学学报,2019,11(1):68-76,9.

基金项目

国家自然科学基金 (70573025) (70573025)

南京信息工程大学学报

OACSTPCD

1674-7070

访问量0
|
下载量0
段落导航相关论文