曲阜师范大学学报(自然科学版)2019,Vol.45Issue(1):1-6,6.DOI:10.3969/j.issn.1001-5337.2019.1.001
完全对换图的广义3-连通度
The Generalized 3-connectivity of Complete-transposition Graphs
摘要
Abstract
Let S (∈)V(G) and κG (S) denote the maximum number r of internally disjoint S-trees T1,T2,…,Tr in graph G such that V(Ti) ∩ V(Tj) =SandE(Ti) ∩ E(Tj) =(O) for anyi,j ∈ {1,2,…,r}and i ≠ j.For an integer k with 2 ≤ k ≤ n,the generalized k-connectivity of a graph G is defined as κk (G) =min {κ (S) 丨 S (∈) V(G) and 丨 S 丨=k}.Complete-transposition graphs are a class of important Cayley graphs in networks.This paper shows that the generalized 3-connectivity of an n-dimensional complete-transpositiongraph CTn is n(n-1)/2-1,that is,for any three vertices in CTn,there exist n(n-1)/2-1 internally disjoint trees connecting them in CTn.关键词
完全对换图/广义连通度/内部不交的S-树/邻点Key words
complete-transposition graph/generalized connectivity/internally disjoint S-tree/neighbour分类
数理科学引用本文复制引用
张燕,阿依古丽·马木提..完全对换图的广义3-连通度[J].曲阜师范大学学报(自然科学版),2019,45(1):1-6,6.基金项目
Natural Science Foundatoon of China(11361060). (11361060)