| 注册
首页|期刊导航|数据采集与处理|基于卷积神经网络的语种识别系统

基于卷积神经网络的语种识别系统

金马 宋彦 戴礼荣

数据采集与处理2019,Vol.34Issue(2):322-330,9.
数据采集与处理2019,Vol.34Issue(2):322-330,9.DOI:10.16337/j.1004-9037.2019.02.015

基于卷积神经网络的语种识别系统

Language Identification Based on Convolutional Neural Network

金马 1宋彦 1戴礼荣1

作者信息

  • 1. 中国科学技术大学语音及语言信息处理国家工程实验室,合肥,230027
  • 折叠

摘要

Abstract

A key problem of language identification (LID) is how to design effective representations which are specific to language information. Recent advances in deep neural networks (DNNs) have led to significant improvements in language identification. The acoustic feature extracted from a structured DNN which is discriminative to phoneme or tri-phone states can significantly improve the performance. End-toend schemes also show its strong capability of modelling in recent years. A novel end-to-end convolutional neural network (CNN) LID system is proposed, called language identification network (LID-net), taking advantage of neural networks (NNs) with the capability in feature extraction and discriminative modelling, which can extract units that discriminant to languages, and we call them LID-senones, thus can extract effective utterance representation with pooling layer. Evaluations on NIST LRE 2009 show improved performance compared to current state-of-the-art deep bottleneck feature with total variability (DBF-TV) method, can achieve 1.35%, 12.79% and 29.84% relative equal error rate (EER) improvement on 30, 10 and 3 s utterances and receive over 30% relative gain in Cavgon all durations.

关键词

语种识别/卷积神经网络/语音段表示/语种区分性基本单元/端对端机制

Key words

language identification/convolutional neural network/utterance representation/language identification (LID)-senone/end-to-end scheme

分类

信息技术与安全科学

引用本文复制引用

金马,宋彦,戴礼荣..基于卷积神经网络的语种识别系统[J].数据采集与处理,2019,34(2):322-330,9.

基金项目

国家自然科学基金(U1613211)资助项目 (U1613211)

数据采集与处理

OA北大核心CSCDCSTPCD

1004-9037

访问量0
|
下载量0
段落导航相关论文