| 注册
首页|期刊导航|土壤学报|土壤水分反演特征变量研究综述

土壤水分反演特征变量研究综述

王俊霞 潘耀忠 朱秀芳 孙章丽

土壤学报2019,Vol.56Issue(1):23-35,13.
土壤学报2019,Vol.56Issue(1):23-35,13.DOI:10.11766/trxb201803090579

土壤水分反演特征变量研究综述

A Review of Researches on Inversion of Eigenvariance of Soil Water

王俊霞 1潘耀忠 2朱秀芳 3孙章丽2

作者信息

  • 1. 北京师范大学地表过程与资源生态国家重点实验室,北京 100875
  • 2. 北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875
  • 3. 北京师范大学地理科学学部遥感科学与工程研究院,北京 100875
  • 折叠

摘要

Abstract

Soil moisture is an integral part of the water, energy and biogeochemical cycle. The information about soil moisture is of great significance to researches on water resources management, agricultural production and climate change. Soil moisture monitoring can be divided into three categories in light of data acquisition method: direct measurement at monitoring sites, simulation and assimilation of soil moisture, and inversion based on remote-sensing data. The remote sensing technology features largescale synchronous observation, covering a range that is not limited by the distribution of ground stations.Then the remote-sensing data based inversion algorithm of soil moisture is an important means of obtaining soil moisture information. However, as soil moisture is strongly influenced by a variety of factors, such as soil properties, surface coverage and meteorological conditions, it is high in spatial heterogeneity. So, it is very difficult to derive large-scales high quality soil moisture data just based on inversion with a single method or single data source. In this paper, factors affecting the inversion of soil moisture were collated, four synthetic multi-featured models for soil moisture inversion were summarized, and existing problems and developmental trends of the inversion processes analyzed. The eigenvariances currently used in soil moisture inversion can be generally sorted into three categories: soil, vegetation and meteorological characteristics. Soil characteristics can be further divided into soil optical reflectance, thermal infrared, microwave brightness and temperature and microwave backlash scattering coefficient, and vegetation characteristics into vegetation optical reflectance and thermal infrared, while meteorological characteristics include rainfall, wind speed, and evapotranspiration and so on. In this paper, synthetic models for multfeatured eigenvariance inversion of soil moisture were summarized, that is, Temperature Vegetation Soil Moisture Dryness Index model (TVMDI) , partition statistics model, benchmark value plus variation model, and artificial neural network model. TVMDI is a cubic model based on land surface temperature, vertical vegetation index and soil moisture, and its use enhances correlativity of prediction with measured value.The partition statistics model is to choose an optimal model for each region for inversion, through analyzing types of land cover. The benchmark value plus variation model is to divide the variation of soil moisture during a specified observation period into benchmark value and variation. The former represents the bottom of soil moisture during that period, and the latter depends on precipitation, evapotranspiration and some other meteorological factors, while integrating remote-sensing meteorological information. The artificial neural network model integrate multi-featured eigenvarianes into soil moisture inversion. The analysis of existing problems in and developmental trend of the use of eigenvariance in soil moisture inversion process indicates that the research on adoption of the theory of eigenvariance in soil moisture inversion is insufficient and comprehensive application of the theory is not deep enough, and stresses that coupled application of various ergenvariances may improve accuracy of soil moisture inversion, which is the hot spot of future researches.

关键词

特征变量/土壤水分/反演/遥感

Key words

Features variables/Soil moisture/Inversion/Remote sensing

分类

社会科学

引用本文复制引用

王俊霞,潘耀忠,朱秀芳,孙章丽..土壤水分反演特征变量研究综述[J].土壤学报,2019,56(1):23-35,13.

基金项目

国家自然科学基金项目(41401479)、地表过程与资源生态国家重点实验室资助项目、国家"高分辨率对地观测系统"重大专项共同资助 (41401479)

Supported by the National Natural Science Foundation for Distinguished Young Scholars of China ( No41401479),the Project of National Key Laboratory for Surface Process and Resource Ecology and the Major Project of High- Resolution Earth Observation System ( No41401479)

土壤学报

OA北大核心CSCDCSTPCD

0564-3929

访问量0
|
下载量0
段落导航相关论文