| 注册
首页|期刊导航|通信学报|基于结构相似性的非参数贝叶斯字典学习算法

基于结构相似性的非参数贝叶斯字典学习算法

董道广 芮国胜 田文飚 康健 刘歌

通信学报2019,Vol.40Issue(1):43-50,8.
通信学报2019,Vol.40Issue(1):43-50,8.DOI:10.11959/j.issn.1000-436x.2019015

基于结构相似性的非参数贝叶斯字典学习算法

Nonparametric Bayesian dictionary learning algorithm based on structural similarity

董道广 1芮国胜 1田文飚 1康健 1刘歌1

作者信息

  • 1. 海军航空大学信号与信息处理山东省重点实验室,山东 烟台 264001
  • 折叠

摘要

Abstract

Though nonparametric Bayesian methods possesses significant superiority with respect to traditional comprehensive dictionary learning methods, there is room for improvement of this method as it needs more consideration over the structural similarity and variability of images. To solve this problem, a nonparametric Bayesian dictionary learning algorithm based on structural similarity was proposed. The algorithm improved the structural representing ability of dictionaries by clustering images according to their non-local structural similarity and introducing block structure into sparse representing of images. Denoising and compressed sensing experiments showed that the proposed algorithm performs better than several current popular unsupervised dictionary learning algorithms.

关键词

非参数贝叶斯/字典学习/结构相似性/图像去噪/压缩感知

Key words

nonparametric Bayesian/dictionary learning/structural similarity/denoising/compressed sensing

分类

信息技术与安全科学

引用本文复制引用

董道广,芮国胜,田文飚,康健,刘歌..基于结构相似性的非参数贝叶斯字典学习算法[J].通信学报,2019,40(1):43-50,8.

基金项目

国家自然科学基金资助项目(No.41606117,No.41476089,No.61671016) (No.41606117,No.41476089,No.61671016)

通信学报

OA北大核心CSCDCSTPCD

1000-436X

访问量0
|
下载量0
段落导航相关论文