| 注册
首页|期刊导航|云南民族大学学报(自然科学版)|基于线性LTSA算法维数约减的软件缺陷预测研究

基于线性LTSA算法维数约减的软件缺陷预测研究

王玉红 范菁 曲金帅 冯景义

云南民族大学学报(自然科学版)2019,Vol.28Issue(1):77-80,4.
云南民族大学学报(自然科学版)2019,Vol.28Issue(1):77-80,4.DOI:10.3969/j.issn.1672-8513.2019.01.016

基于线性LTSA算法维数约减的软件缺陷预测研究

A software defect prediction model based on the LTSA dimension reduction algorithm

王玉红 1范菁 1曲金帅 1冯景义1

作者信息

  • 1. 云南民族大学 云南省高校信息与通信安全灾备重点实验室, 云南 昆明 650500
  • 折叠

摘要

Abstract

Software defect prediction is an important technology in the software development process. For a high-dimensional and small sampling of software defect data sets, the prediction accuracy is degraded. A linear partial-cutting spatial arrangement algorithm is used to reduce the dimensionality of data sets. The vector machine is used as the basic classifier for binary classification, and the software defect prediction model is established. The prediction accuracy of the model is evaluated by the two-dimensional confusion matrix. The experimental results show that compared with other models, this model can be reduced to a lower dimension with fewer neighborhood points, without re-learning the popular geometry of the sample space, directly mapping new sample points, and predicting the time cost. From 13. 7269 seconds to 6. 2178 seconds, the time cost for parameter optimization is reduced from267. 4421 seconds to 165. 98 seconds, effectively improving the efficiency of software defect prediction.

关键词

软件缺陷预测/线性LTSA算法/流形学习/支持向量机

Key words

software defect prediction/linear LTSA algorithm/popular learning/support vector machine

分类

信息技术与安全科学

引用本文复制引用

王玉红,范菁,曲金帅,冯景义..基于线性LTSA算法维数约减的软件缺陷预测研究[J].云南民族大学学报(自然科学版),2019,28(1):77-80,4.

基金项目

国家自然科学基金(61540063) (61540063)

云南省应用基础研究计划项目(2018FD055) (2018FD055)

云南省教育厅科学研究基金(2017ZDX045) (2017ZDX045)

云南民族大学校级项目(2017QN02) (2017QN02)

"多元感知网及信息物理系统"科学创新团队开放式基金 ()

云南民族大学学报(自然科学版)

OACSTPCD

1672-8513

访问量0
|
下载量0
段落导航相关论文