| 注册
首页|期刊导航|云南民族大学学报(自然科学版)|基于密度的全局K-means算法的改进

基于密度的全局K-means算法的改进

徐娟 范菁 陈楚天 曲金帅

云南民族大学学报(自然科学版)2019,Vol.28Issue(2):160-164,5.
云南民族大学学报(自然科学版)2019,Vol.28Issue(2):160-164,5.DOI:10.3969/j.issn.1672-8513.2019.02.013

基于密度的全局K-means算法的改进

Improvement of the global K-means algorithm based on density

徐娟 1范菁 2陈楚天 1曲金帅2

作者信息

  • 1. 云南民族大学 云南省高校信息与通信安全灾备重点实验室,云南 昆明 650500
  • 2. 云南民族大学 电气信息工程学院,云南 昆明 650500
  • 折叠

摘要

Abstract

When selecting the cluster center point of the next cluster, it is necessary for the global k-means clustering algorithm and the fast global k-means clustering algorithm to calculate the intra-cluster square error when each point in the dataset is used as the candidate cluster center point one by one. However, there are many noise points in the data set, and it is not possible to use them candidate points. In order to eliminate noise points, a high-density-based DGK-means algorithm is proposed and tested by four sets of data sets in the UCI database. The comparison of the improved DGK-means algorithm with the global?k-means clustering algorithm and the fast global k-means clustering algorithm reveals that under the premise of the stable clustering effect, the clustering time of improved algorithm is shorter and its efficiency is better.

关键词

GK-means算法/FGK-means算法/DGK-means算法/高密度数

Key words

GK-means algorithm/FGK-means algorithm/DGK-means algorithm/high-density number

分类

信息技术与安全科学

引用本文复制引用

徐娟,范菁,陈楚天,曲金帅..基于密度的全局K-means算法的改进[J].云南民族大学学报(自然科学版),2019,28(2):160-164,5.

基金项目

国家自然科学基金(61540063) (61540063)

云南省应用基础研究计划项目(2018FD055) (2018FD055)

云南省教育厅科学研究基金(2017ZDX045) (2017ZDX045)

云南民族大学校级科研项目(2017QN02) (2017QN02)

云南省高校科技创新团队开放式基金 ()

云南民族大学学报(自然科学版)

OACSTPCD

1672-8513

访问量0
|
下载量0
段落导航相关论文